Introduction to Topology Exercises I

Section A exercises are the easiest; Section B are to be handed in; Section C are harder. Exam-type questions are indicated with an asterisk. Some Section A questions may be helpful in Section B.

Hand-in time: 2pm Wednesday of week 2.

Section A

- 1. Find explicit homeomorphisms
 - 1. $(0,1) \to \mathbb{R}$.
 - 2. $(0,1) \to (0,\infty)$
 - 3. $\mathbb{R} \times S^1 \to \mathbb{R}^2 \setminus \{(0,0)\}$
 - 4. $[0,1] \times S^1 \to \{(x,y) \in \mathbb{R} : 1 \le ||(x,y)|| \le 2\}.$
- 2. Show that the following pairs of spaces are *not* homeomorphic:
 - 1. S^1 and [0,1] (Hint: consider what happens if you remove a single point from each.)
 - 2. The letter "X" (four line-segments sharing a common end-point) and the letter "Y" (three line segments sharing a common end-point).
 - 3. S^2 and the torus (the surface of a doughnut), using the fact that every closed curve in S^2 separates it (i.e. the complement has at least two connected components).
- **4.** Show that if X is a compact topological space and \sim is an equivalence relation, then X/\sim is also compact. Hint: $q:X\to X/\sim$ is continuous.
- **5.** Suppose that $f: X \to Y$ is a continuous map. Define a relation \sim on X by setting $x_1 \sim x_2$ if and only if $f(x_1) = f(x_2)$. Show
- (i) \sim is an equivalence relation.
- (ii) If f is surjective then there is a continuous bijection $X/\sim Y$.

We call \sim the equivalence relation induced by f.

Section B

Exercises 6, 7 and 8 use the *compact-to-Hausdorff Lemma* stated in Wednesday's lecture: If $f: X \to Y$ is a continuous bijection, and if X is compact and Y is Hausdorff, then f is a homeomorphism. This is Proposition 5.2 in the online Lecture Notes.

- **6.** (i) Find a surjective continuous map from the closed interval [-1, 1] to the unit circle S^1 that is injective except that it sends 1 and -1 to the same point. You could define it using a formula, or by means of a good picture.
- (ii) Define an equivalence relation on [-1,1] by declaring the two end-points, 1 and -1, to be equivalent. Use (i) and Proposition 3.1 in the online Lecture Notes to find a continuous bijection $[-1,1]/\sim \to S^1$.

(iii) Show that $[-1,1]/\sim$ is homeomorphic to S^1 .

[6 marks]

7. Let D^2 be the closed unit disc in \mathbb{R}^2 , and define an equivalence relation on D^2 by setting $x_1 \sim x_2$ if $||x_1|| = ||x_2|| = 1$. Show that D^2/\sim is homeomorphic to S^2 . Hint: first define a surjection $D^2 \to S^2$ mapping all of ∂D^2 to the north pole. You could define it using a formula, or by means of a good picture.

[6 marks]

8. Suppose that $f: X \to Y$ is continuous and surjective, and let \sim be the equivalence relation induced by f (see Q5 above).

Show that if X is compact and Y is Hausdorff then X/\sim is homeomorphic to Y.

Which theorem of group theory does this resemble?

[3 marks]

9. The real projective plane \mathbb{RP}^2 is defined as the quotient of the 2-sphere S^2 by the equivalence relation $x \sim -x$ which identifies antipodal points. Show that \mathbb{RP}^2 is Hausdorff.

[5 marks]

Section C

- **10.** On the closed unit ball D^n in \mathbb{R}^n , define an equivalence relation by setting $x_1 \sim x_2$ if $||x_1|| = ||x_2|| = 1$. Show that D^n / \sim is homeomorphic to S^n .
- 11. Suppose that X is a topological space with an equivalence relation \sim , and let Q be the quotient space. Suppose that $X_1 \subset X$ meets every equivalence class. The restriction of \sim to X_1 determines an equivalence relation \sim_1 on X_1 . Let Q_1 be the quotient. Suppose that Q_1 is compact and Q is Hausdorff. Complete the following diagram to show that Q_1 and Q are homeomorphic:

$$\begin{array}{c|c} X_1 & \longrightarrow X \\ q_1 & & \downarrow q \\ Q_1 & Q \end{array}$$

12. (i) Let Q be the quotient of $\mathbb{R}^3 \setminus \{0\}$ by the equivalence relation

$$x_1 \sim x_2$$
 if there exists $\lambda \in \mathbb{R}$ such that $\lambda x_1 = x_2$.

Show, assuming that Q is Hausdorff, that the space \mathbb{RP}^2 as defined¹ in Exercise 9 is homeomorphic to Q. Hint: use Exercise 11.

- (ii) Show that Q is Hausdorff.
- 13. Let Q be the quotient of the unit disc $D \subset \mathbb{R}^2$ by the equivalence relation

$$x_1 \sim x_1$$
 if $||x_1|| = ||x_2|| = 1$ and $x_1 = -x_2$.

Show that Q is homeomorphic to \mathbb{RP}^2 . Hint: D is homeomorphic to a hemisphere in S^2 .

 $^{^{1}}$ In fact the definition of \mathbb{RP}^{2} given here in Exercise 12 is more useful and more usual.