
Problem 3.1 We use Fourier series to show that
∑∞
n=1

1
n2 = π2

6 . By Corollary 3.57 of Rynne & Youngson,
we know that the set

E = {en(x) = (2π)−1/2einx : n ∈ Z}
is an orthonormal basis for L2

C[−π, π].

Setting f(x) = x on [−π, π], we have

‖f‖2 =

∫ π

−π
xxdx =

∫ π

−π
x2 dx =

2

3
π3.

Now let n ∈ Z \ {0}. We compute (uv)’ = u’v + uv’ int uv’ = uv - int u’v

(2π)1/2(f, en) =

∫ π

−π
xeinx dx

=
1

in
(xeinx)|π−π −

1

in

∫ π

−π
einx dx∫ π

−π
einx dx =

1

in
einπ − 1

in
e−inπ

=
2

n

einπ − e−inπ

2i
= 2 sin(nπ)/n = 0

(xeinx)|π−π = πeiπn + πe−iπn = 2π cos(nπ) = 2π(−1)n

(2π)1/2(f, en) =
2π(−1)n

in
.

Furthermore, we have

(2π)1/2(f, e0) =

∫ π

−π
xe0ix dx =

∫ π

−π
xdx = 0

as f(x) = x is an odd function on [−π, π]. Using Parseval’s theorem, we obtain

2

3
π3 = ‖f‖2 =

∞∑
n=−∞

|(f, en)|2

=

−1∑
n=−∞

∣∣∣∣ 2π(−1)n

(2π)1/2in

∣∣∣∣2 + 0 +

∞∑
n=1

∣∣∣∣ 2π(−1)n

(2π)1/2in

∣∣∣∣2
= 4π

∞∑
n=1

1

n2

so
∑∞
n=1

1
n2 = π2

6 .

Problem 3.2 (a) Let X be a Banach space and suppose Y is a closed linear subspace of X. We show that
X/Y is again a Banach space with norm ‖[x]‖ = infu∈[x] ‖u‖.
We first show that this newly defined norm is in fact a norm. Let [x], [x′] ∈ X/Y and
α ∈ F.

Clearly, we have ‖[0]‖ = 0, as 0 ∈ Y . Suppose ‖[x]‖ = 0. Then infu∈[x] ‖u‖ = 0, and there
exists a sequence {un} ⊂ [x] such that ‖un‖ → 0 as n → ∞. But then un → 0, and as
[x] = x+ Y is closed, 0 ∈ [x]. Thus we have [x] = [0], and ‖[x]‖ = 0 implies that [x] = [0].

Furthermore, we have

‖α[x]‖ = ‖[αx]‖ = inf
u∈[αx]

‖u‖

= inf
u∈[x]

‖αu‖ = |α| inf
u∈[x]

‖u‖ = ‖[x]‖

1



and

‖[x] + [x′]‖ = inf
u∈[x+x′]

‖u‖ = inf
u∈[x],v∈[x′]

‖u+ v‖

≤ inf
u∈[x]

‖u‖+ inf
v∈[x′]

‖v‖ = ‖[x]‖+ ‖[x′]‖ .

As such, ‖·‖ is a norm.

We now show that X/Y is complete with respect to this norm. Let {[xn]} be a sequence
in X/Y such that

∑∞
n=1 ‖[xn]‖ converges. We show that

∑∞
n=1[xn] converges; then by

Exercise 2.2 of Homework Assignment 2, we obtain that X/Y is complete.

Note that for each n ∈ N, there must exist some un ∈ [xn] such that ‖un‖ ≤ ‖[xn]‖ + 1
2n

as ‖[xn]‖ = infu∈[xn] ‖u‖. Then we have

N∑
n=1

‖un‖ ≤
N∑
n=1

‖[xn]‖+
1

2n

so
∑∞
n=1 ‖un‖ ≤

∑∞
n=1 ‖[xn]‖ + 1 < ∞ and

∑∞
n=1 ‖un‖ converges. As X is Banach,∑∞

n=1 un must converge as well. Call the limit of this series u. Now note that the map
X → X/Y given by x 7→ [x] is continuous, as ‖[x]‖ = infu∈[x] ‖u‖ ≤ ‖x‖. As such, we
obtain

∞∑
n=1

[xn] =

∞∑
n=1

[un] = lim
N→∞

N∑
n=1

[un] = lim
N→∞

[
N∑
n=1

un

]
=

[
lim
N→∞

N∑
n=1

un

]
= [u]

so that
∑∞
n=1[xn] converges. Thus we conclude that X/Y is Banach.

(b) Let H be a Hilbert space and let Y be a closed linear subspace of H .

Define ([x], [y]) := (π(x), π(y)) where π : H → Y ⊥ denotes the projection of H onto Y ⊥.
We define the projection π as follows. Let x ∈ H . As Y is a closed linear subspace and
thus convex and non-empty, there exists a unique q ∈ Y such that

‖x− q‖ = inf{‖x− y‖ : y ∈ Y }

Then define π(x) = x − q. Note that π(x) is uniquely determined by the property that
(x− π(x)) ⊥ Y ⊥.

Claim. π : H → Y ⊥ is a linear map.

Proof. Let α, β ∈ F and x, x′ ∈H . Then, for any w ∈ Y ⊥,

(αx+ βx′ − απ(x)− βπ(x′), w) = α(x− π(x), w) + β(x′ − π(x′), w) = 0

as (x−π(x)) ⊥ Y ⊥ and (x′−π(x′)) ⊥ Y ⊥. By uniqueness of the projection, we must have
π(αx+ βx′) = απ(x) + βπ(x′).

Claim. (·, ·) is an inner product.

Proof. First observe that (·, ·) is well defined, as two different representatives of an equiv-
alence class [x] ∈ H /Y differ by an element of Y , and Y is precisely the kernel of
π : H → Y ⊥.

Let [x], [y], [z] ∈ H /Y and α, β ∈ F. We have ([0], [0]) = (π(0), π(0)) = (0, 0) = 0. Now
suppose ([x], [x]) = 0. Then (π(x), π(x)) = 0, so π(x) = 0, and x ∈ kerπ = Y . But then
[x] = 0, by definition of the quotient space H /Y .
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We have

([x], [y]) = (π(x), π(y)) = (π(y), π(x)) = ([x], [y])

and

(α[x] + β[y], [z]) = (π(αx+ βy), π(z))

= α(π(x), π(z)) + β(π(y), π(z)) = α([x], [z]) + β([y], [z])

so we conclude that (·, ·) is indeed an inner product.

Claim. ‖[x]‖ = ‖π(x)‖, where ‖[x]‖ is the norm defined in part (a).

Proof.

‖[x]‖ = inf
u∈[x]

‖u‖ = inf
x−u∈Y

‖x− (x− u)‖ = ‖π(x)‖

by definition of the projection π.

Then we have
([x], [x]) = (π(x), π(x)) = ‖π(x)‖2 = ‖[x]‖2

and thus the norm and inner product on H /Y are compatible. As such, we get complete-
ness of H /Y with respect to the inner product by part (a).

Problem 3.3 Let (X, ‖·‖) be a Banach space.

(a) For each k ∈ N, let Ak ⊂ X be compact and rk ∈ R, rk > 0, such that Ak+1 ⊆ Ak+Brk(0),

and
∑∞
k=1 rk <∞. We show that A :=

⋃∞
k=1Ak is compact.

We use the following extension of the Heine-Borel theorem.

Theorem (Extension of Heine-Borel). Let (M,d) be a metric space. Then M is compact
if and only if it is complete and totally bounded. Here, totally bounded means that for every
ε > 0, there exist finitely many x1, . . . , xn ∈M such that M = ∪nk=1Bε(xk).

Let d(x, y) := ‖x− y‖ be the metric on X. Clearly, A is complete, as it is a closed subspace
of the complete metric spaceX. We now show that A is totally bounded. Let ε > 0 be given.
Set δ =

∑∞
k=1 rk + 1 and choose N such that

∑∞
k=1 rk <

∑N−1
k=1 rk + ε

3δ . Since each of the

A1, . . . , AN is compact, there exist x1, . . . , xL ∈
⋃N
j=1Aj with

⋃N
j=1Aj ⊆

⋃L
i=1Bε/δ(xi).

We now show that A ⊆
⋃L
i=1Bε(xi). Let y ∈ A; then d(y,

⋃∞
n=1An) = 0, so there must

exist some minimal M such that d(y,AM ) < ε/(3δ).

If M ≤ N , then y ∈
⋃N
j=1Aj ⊆

⋃L
i=1Bε/δ(xi) ⊆

⋃L
i=1Bε(xi) as δ > 1 by construction.

Now suppose M > N . Then there exists a ∈ AM such that d(y, a) < ε/(3δ). Then

d(a,
⋃N
j=1Aj) ≤

∑M
k=N rk as a ∈ AM (by assumption on the An+1 being contained in

An+Brk(0)). Furthermore, by choice of N , we have
∑M
k=N rk <

∑∞
k=1 rk−

∑N−1
k=1 rk <

ε
3δ .

As such, we have d(a, xi) ≤ ε
3δ + ε

3δ for some i ∈ {1, . . . , L} as the Bε/(3δ)(xi) cover
⋃N
j=1Aj .

For this i, we have

d(y, xi) ≤ d(y, a) + d(a, xi) < ε/(3δ) + 2ε/(3δ) = ε/δ < ε

as δ > 1, so y ∈ Bε(xi).
Thus, we conclude that A is covered by Bε(x1), . . . , Bε(xL), and A is totally bounded. As
A was already shown to be complete, it is compact by the extension of the Heine-Borel
theorem.
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(b) Let p ≥ 1 and let {rk} be a sequence in R such that rk > 0 for all k ∈ N and
∑∞
k=1 rk <∞.

We show that
K = {x = {xk} ∈ `p : |xk| ≤ rk for all k ∈ N}

is compact. Define the sets A1, A2, . . . by

Ak = {x = {xn} ∈ `p : |xn| ≤ rn for all 1 ≤ n ≤ k, and |xn| ≤ rn/(n− 1) for all n > k}

We show that these sets A1, A2, . . . satisfy the assumptions in part (a). We start by showing
that each Ak is compact. Clearly, each Ak is closed as it is defined by equalities, so it must
be complete (as lp is complete). We now show that Ak is totally bounded. Let ε > 0 be

given, and choose K > k with 1/K < ε, and
∑∞
j=1 rj −

∑K
j=1 rj < ε. Furthermore, assume

without loss of generality that rl < 1 for all l ≥ K. For each 1 ≤ j ≤ K, let Yj a finite

set of {yj,1, . . . , yj,Lj
} ⊂ F such that {p ∈ F : |p| ≤ rj} ⊆

⋃Lj

i=1Bmin{1/2,ε}/K(yj,i), and
|yj,i| ≤ rj for each i. Such a set necessarily exists, as {p ∈ F : |p| ≤ rj} is clearly compact
in F (as it is closed and bounded), so we can use the total boundedness property. Then the
set Y = Y1×· · ·×YK×{0}×{0} · · · ⊆ `p is also finite. We show that Ak ⊆

⋃
y∈Y B2ε1/p(y).

Let x ∈ Ak; then set x′ = (x1, . . . , xK , 0, 0, . . . ) ∈ `p. There exists some y ∈ Y such that∑K
n=1 |x′n − yn| < K min{1/2, ε}/K = min{1/2, ε} by choice of the Yj . Then we have

‖x′ − y‖pp =
∑K
n=1 |x′n−y|p ≤

∑K
n=1 |x′n−y| < Kε/K = ε. Note that |x′n−yn|p ≤ |x′n−yn|

as |x′n − yn| < min{1/2, ε}/K by choice of the Yn.

We have

‖x− y‖p ≤ ‖x− x
′‖p + ‖x′ − y‖p <

( ∞∑
n=K+1

|xn|p
)1/p

+ ε1/p

<

( ∞∑
n=K+1

rn
n− 1

)1/p

+ ε1/p

< 2ε1/p

by choice of K, so x ∈ B2ε1/p(y). As such, we can cover Ak by
⋃
y∈Y B2ε1/p(y) and Y is

finite, so Ak is totally bounded and compact.

Now, we clearly have
⋃∞
k=1Ak = K, and K is evidently closed, so by part (a), K is compact.
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