Problem 3.1 We use Fourier series to show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. By Corollary 3.57 of Rynne & Youngson, we know that the set

$$E = \{e_n(x) = (2\pi)^{-1/2} e^{inx} : n \in \mathbb{Z}\}$$

is an orthonormal basis for $L^2_{\mathbb{C}}[-\pi,\pi]$. Setting f(x) = x on $[-\pi,\pi]$, we have

$$||f||^{2} = \int_{-\pi}^{\pi} x \overline{x} dx = \int_{-\pi}^{\pi} x^{2} dx = \frac{2}{3}\pi^{3}.$$

Now let $n \in \mathbb{Z} \setminus \{0\}$. We compute (uv)' = u'v + uv' int uv' = uv - int u'v

$$(2\pi)^{1/2}(f,e_n) = \int_{-\pi}^{\pi} x e^{inx} dx$$

$$= \frac{1}{in} (xe^{inx})|_{-\pi}^{\pi} - \frac{1}{in} \int_{-\pi}^{\pi} e^{inx} dx$$

$$\int_{-\pi}^{\pi} e^{inx} dx = \frac{1}{in} e^{in\pi} - \frac{1}{in} e^{-in\pi}$$

$$= \frac{2}{n} \frac{e^{in\pi} - e^{-in\pi}}{2i} = 2\sin(n\pi)/n = 0$$

$$(xe^{inx})|_{-\pi}^{\pi} = \pi e^{i\pi n} + \pi e^{-i\pi n} = 2\pi \cos(n\pi) = 2\pi(-1)^n$$

$$(2\pi)^{1/2}(f,e_n) = \frac{2\pi(-1)^n}{in}.$$

Furthermore, we have

$$(2\pi)^{1/2}(f,e_0) = \int_{-\pi}^{\pi} x e^{0ix} \, \mathrm{d}x = \int_{-\pi}^{\pi} x \, \mathrm{d}x = 0$$

as f(x) = x is an odd function on $[-\pi, \pi]$. Using Parseval's theorem, we obtain

$$\frac{2}{3}\pi^{3} = \|f\|^{2} = \sum_{n=-\infty}^{\infty} |(f,e_{n})|^{2}$$
$$= \sum_{n=-\infty}^{-1} \left|\frac{2\pi(-1)^{n}}{(2\pi)^{1/2}in}\right|^{2} + 0 + \sum_{n=1}^{\infty} \left|\frac{2\pi(-1)^{n}}{(2\pi)^{1/2}in}\right|^{2}$$
$$= 4\pi \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

so $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Problem 3.2 (a) Let X be a Banach space and suppose Y is a closed linear subspace of X. We show that X/Y is again a Banach space with norm $\|[x]\| = \inf_{u \in [x]} \|u\|$.

We first show that this newly defined norm is in fact a norm. Let $[x], [x'] \in X/Y$ and $\alpha \in \mathbb{F}$.

Clearly, we have $\|[0]\| = 0$, as $0 \in Y$. Suppose $\|[x]\| = 0$. Then $\inf_{u \in [x]} \|u\| = 0$, and there exists a sequence $\{u_n\} \subset [x]$ such that $\|u_n\| \to 0$ as $n \to \infty$. But then $u_n \to 0$, and as [x] = x + Y is closed, $0 \in [x]$. Thus we have [x] = [0], and $\|[x]\| = 0$ implies that [x] = [0]. Furthermore, we have

$$\begin{aligned} |\alpha[x]|| &= \|[\alpha x]\| = \inf_{u \in [\alpha x]} \|u\| \\ &= \inf_{u \in [x]} \|\alpha u\| = |\alpha| \inf_{u \in [x]} \|u\| = \|[x]\| \end{aligned}$$

and

$$\begin{split} \|[x] + [x']\| &= \inf_{u \in [x+x']} \|u\| = \inf_{u \in [x], v \in [x']} \|u+v\| \\ &\leq \inf_{u \in [x]} \|u\| + \inf_{v \in [x']} \|v\| = \|[x]\| + \|[x']\| \, . \end{split}$$

As such, $\|\cdot\|$ is a norm.

We now show that X/Y is complete with respect to this norm. Let $\{[x_n]\}$ be a sequence in X/Y such that $\sum_{n=1}^{\infty} ||[x_n]||$ converges. We show that $\sum_{n=1}^{\infty} [x_n]$ converges; then by Exercise 2.2 of Homework Assignment 2, we obtain that X/Y is complete.

Note that for each $n \in \mathbb{N}$, there must exist some $u_n \in [x_n]$ such that $||u_n|| \le ||[x_n]|| + \frac{1}{2^n}$ as $||[x_n]|| = \inf_{u \in [x_n]} ||u||$. Then we have

$$\sum_{n=1}^{N} \|u_n\| \le \sum_{n=1}^{N} \|[x_n]\| + \frac{1}{2^n}$$

so $\sum_{n=1}^{\infty} \|u_n\| \leq \sum_{n=1}^{\infty} \|[x_n]\| + 1 < \infty$ and $\sum_{n=1}^{\infty} \|u_n\|$ converges. As X is Banach, $\sum_{n=1}^{\infty} u_n$ must converge as well. Call the limit of this series u. Now note that the map $X \to X/Y$ given by $x \mapsto [x]$ is continuous, as $\|[x]\| = \inf_{u \in [x]} \|u\| \leq \|x\|$. As such, we obtain

$$\sum_{n=1}^{\infty} [x_n] = \sum_{n=1}^{\infty} [u_n] = \lim_{N \to \infty} \sum_{n=1}^{N} [u_n] = \lim_{N \to \infty} \left[\sum_{n=1}^{N} u_n \right] = \left[\lim_{N \to \infty} \sum_{n=1}^{N} u_n \right] = [u]$$

so that $\sum_{n=1}^{\infty} [x_n]$ converges. Thus we conclude that X/Y is Banach.

(b) Let \mathscr{H} be a Hilbert space and let Y be a closed linear subspace of \mathscr{H} .

Define $([x], [y]) := (\pi(x), \pi(y))$ where $\pi : \mathscr{H} \to Y^{\perp}$ denotes the projection of \mathscr{H} onto Y^{\perp} . We define the projection π as follows. Let $x \in \mathscr{H}$. As Y is a closed linear subspace and thus convex and non-empty, there exists a unique $q \in Y$ such that

$$||x - q|| = \inf\{||x - y|| : y \in Y\}$$

Then define $\pi(x) = x - q$. Note that $\pi(x)$ is uniquely determined by the property that $(x - \pi(x)) \perp Y^{\perp}$.

Claim. $\pi: \mathscr{H} \to Y^{\perp}$ is a linear map.

Proof. Let $\alpha, \beta \in \mathbb{F}$ and $x, x' \in \mathscr{H}$. Then, for any $w \in Y^{\perp}$,

$$(\alpha x + \beta x' - \alpha \pi(x) - \beta \pi(x'), w) = \alpha(x - \pi(x), w) + \beta(x' - \pi(x'), w) = 0$$

as $(x - \pi(x)) \perp Y^{\perp}$ and $(x' - \pi(x')) \perp Y^{\perp}$. By uniqueness of the projection, we must have $\pi(\alpha x + \beta x') = \alpha \pi(x) + \beta \pi(x')$.

Claim. (\cdot, \cdot) is an inner product.

Proof. First observe that (\cdot, \cdot) is well defined, as two different representatives of an equivalence class $[x] \in \mathscr{H}/Y$ differ by an element of Y, and Y is precisely the kernel of $\pi : \mathscr{H} \to Y^{\perp}$.

Let $[x], [y], [z] \in \mathscr{H}/Y$ and $\alpha, \beta \in \mathbb{F}$. We have $([0], [0]) = (\pi(0), \pi(0)) = (0, 0) = 0$. Now suppose ([x], [x]) = 0. Then $(\pi(x), \pi(x)) = 0$, so $\pi(x) = 0$, and $x \in \ker \pi = Y$. But then [x] = 0, by definition of the quotient space \mathscr{H}/Y .

We have

$$([x],[y]) = (\pi(x),\pi(y)) = \overline{(\pi(y),\pi(x))} = \overline{([x],[y])}$$

and

$$\begin{aligned} (\alpha[x] + \beta[y], [z]) &= (\pi(\alpha x + \beta y), \pi(z)) \\ &= \alpha(\pi(x), \pi(z)) + \beta(\pi(y), \pi(z)) = \alpha([x], [z]) + \beta([y], [z]) \end{aligned}$$

so we conclude that (\cdot, \cdot) is indeed an inner product.

Claim. $||[x]|| = ||\pi(x)||$, where ||[x]|| is the norm defined in part (a).

Proof.

$$\|[x]\| = \inf_{u \in [x]} \|u\| = \inf_{x-u \in Y} \|x - (x-u)\| = \|\pi(x)\|$$

by definition of the projection π .

Then we have

$$([x], [x]) = (\pi(x), \pi(x)) = ||\pi(x)||^2 = ||[x]||^2$$

and thus the norm and inner product on \mathcal{H}/Y are compatible. As such, we get completeness of \mathcal{H}/Y with respect to the inner product by part (a).

Problem 3.3 Let $(X, \|\cdot\|)$ be a Banach space.

(a) For each $k \in \mathbb{N}$, let $A_k \subset X$ be compact and $r_k \in \mathbb{R}$, $r_k > 0$, such that $A_{k+1} \subseteq A_k + B_{r_k}(0)$, and $\sum_{k=1}^{\infty} r_k < \infty$. We show that $A := \overline{\bigcup_{k=1}^{\infty} A_k}$ is compact. We use the following extension of the Heine-Borel theorem.

Theorem (Extension of Heine-Borel). Let (M, d) be a metric space. Then M is compact if and only if it is complete and totally bounded. Here, totally bounded means that for every $\epsilon > 0$, there exist finitely many $x_1, \ldots, x_n \in M$ such that $M = \bigcup_{k=1}^n B_{\epsilon}(x_k)$.

Let d(x, y) := ||x - y|| be the metric on X. Clearly, A is complete, as it is a closed subspace of the complete metric space X. We now show that A is totally bounded. Let $\epsilon > 0$ be given. Set $\delta = \sum_{k=1}^{\infty} r_k + 1$ and choose N such that $\sum_{k=1}^{\infty} r_k < \sum_{k=1}^{N-1} r_k + \frac{\epsilon}{3\delta}$. Since each of the A_1, \ldots, A_N is compact, there exist $x_1, \ldots, x_L \in \bigcup_{j=1}^N A_j$ with $\bigcup_{j=1}^N A_j \subseteq \bigcup_{i=1}^L B_{\epsilon/\delta}(x_i)$. We now show that $A \subseteq \bigcup_{i=1}^L B_{\epsilon}(x_i)$. Let $y \in A$; then $d(y, \bigcup_{n=1}^{\infty} A_n) = 0$, so there must exist some minimal M such that $d(y, A_M) < \epsilon/(3\delta)$.

If $M \leq N$, then $y \in \bigcup_{j=1}^{N} A_j \subseteq \bigcup_{i=1}^{L} B_{\epsilon/\delta}(x_i) \subseteq \bigcup_{i=1}^{L} B_{\epsilon}(x_i)$ as $\delta > 1$ by construction. Now suppose M > N. Then there exists $a \in A_M$ such that $d(y, a) < \epsilon/(3\delta)$. Then $d(a, \bigcup_{j=1}^{N} A_j) \leq \sum_{k=N}^{M} r_k$ as $a \in A_M$ (by assumption on the A_{n+1} being contained in $A_n + \overline{B}_{r_k}(0)$). Furthermore, by choice of N, we have $\sum_{k=N}^{M} r_k < \sum_{k=1}^{\infty} r_k - \sum_{k=1}^{N-1} r_k < \frac{\epsilon}{3\delta}$. As such, we have $d(a, x_i) \leq \frac{\epsilon}{3\delta} + \frac{\epsilon}{3\delta}$ for some $i \in \{1, \ldots, L\}$ as the $B_{\epsilon/(3\delta)}(x_i)$ cover $\bigcup_{j=1}^{N} A_j$. For this i, we have

$$d(y, x_i) \le d(y, a) + d(a, x_i) < \epsilon/(3\delta) + 2\epsilon/(3\delta) = \epsilon/\delta < \epsilon$$

as $\delta > 1$, so $y \in B_{\epsilon}(x_i)$.

Thus, we conclude that A is covered by $B_{\epsilon}(x_1), \ldots, B_{\epsilon}(x_L)$, and A is totally bounded. As A was already shown to be complete, it is compact by the extension of the Heine-Borel theorem.

(b) Let $p \ge 1$ and let $\{r_k\}$ be a sequence in \mathbb{R} such that $r_k > 0$ for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} r_k < \infty$. We show that

$$K = \{x = \{x_k\} \in \ell^p : |x_k| \le r_k \text{ for all } k \in \mathbb{N}\}$$

is compact. Define the sets A_1, A_2, \ldots by

$$A_k = \{x = \{x_n\} \in \ell^p : |x_n| \le r_n \text{ for all } 1 \le n \le k, \text{ and } |x_n| \le r_n/(n-1) \text{ for all } n > k\}$$

We show that these sets A_1, A_2, \ldots satisfy the assumptions in part (a). We start by showing that each A_k is compact. Clearly, each A_k is closed as it is defined by equalities, so it must be complete (as l^p is complete). We now show that A_k is totally bounded. Let $\epsilon > 0$ be given, and choose K > k with $1/K < \epsilon$, and $\sum_{j=1}^{\infty} r_j - \sum_{j=1}^{K} r_j < \epsilon$. Furthermore, assume without loss of generality that $r_l < 1$ for all $l \ge K$. For each $1 \le j \le K$, let Y_j a finite set of $\{y_{j,1}, \ldots, y_{j,L_j}\} \subset \mathbb{F}$ such that $\{p \in \mathbb{F} : |p| \le r_j\} \subseteq \bigcup_{i=1}^{L_j} B_{\min\{1/2,\epsilon\}/K}(y_{j,i})$, and $|y_{j,i}| \le r_j$ for each i. Such a set necessarily exists, as $\{p \in \mathbb{F} : |p| \le r_j\}$ is clearly compact in \mathbb{F} (as it is closed and bounded), so we can use the total boundedness property. Then the set $Y = Y_1 \times \cdots \times Y_K \times \{0\} \times \{0\} \cdots \subseteq \ell^p$ is also finite. We show that $A_k \subseteq \bigcup_{y \in Y} B_{2\epsilon^{1/p}}(y)$. Let $x \in A_k$; then set $x' = (x_1, \ldots, x_K, 0, 0, \ldots) \in \ell^p$. There exists some $y \in Y$ such that $\sum_{n=1}^{K} |x'_n - y_n| < K \min\{1/2, \epsilon\}/K = \min\{1/2, \epsilon\}$ by choice of the Y_j . Then we have $||x' - y||_p^p = \sum_{n=1}^{K} |x'_n - y_n| < \sum_{n=1}^{K} |x'_n - y_n| < K\epsilon/K = \epsilon$. Note that $|x'_n - y_n|^p \le |x'_n - y_n|$ as $|x'_n - y_n| < \min\{1/2, \epsilon\}/K$ by choice of the Y_n .

$$\begin{split} \|x - y\|_p &\leq \|x - x'\|_p + \|x' - y\|_p < \left(\sum_{n=K+1}^{\infty} |x_n|^p\right)^{1/p} + \epsilon^{1/p} \\ &< \left(\sum_{n=K+1}^{\infty} \frac{r_n}{n-1}\right)^{1/p} + \epsilon^{1/p} \\ &< 2\epsilon^{1/p} \end{split}$$

by choice of K, so $x \in B_{2\epsilon^{1/p}}(y)$. As such, we can cover A_k by $\bigcup_{y \in Y} B_{2\epsilon^{1/p}}(y)$ and Y is finite, so A_k is totally bounded and compact.

Now, we clearly have $\bigcup_{k=1}^{\infty} A_k = K$, and K is evidently closed, so by part (a), K is compact.