Problem 3.1 We use Fourier series to show that >~ n2 = —2. By Corollary 3.57 of Rynne & Youngson,
we know that the set ‘
E = {en(x) = (2m)" V%™ . n e Z}

is an orthonormal basis for Li[—m, 7).

Setting f(z) = x on [—m, 7], we have
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Furthermore, we have
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as f(x) = x is an odd function on [—m,7]. Using Parseval’s theorem, we obtain
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Problem 3.2 (a) Let X be a Banach space and suppose Y is a closed linear subspace of X. We show that

X/Y is again a Banach space with norm ||[z]|| = inf, [y [lu].

We first show that this newly defined norm is in fact a norm. Let [z],[2'] € X/Y and
acl.

Clearly, we have [|[0]|| = 0, as 0 € Y. Suppose ||[z]|| = 0. Then inf, ¢}, [[ul = 0, and there

exists a sequence {u,} C [z] such that |u,| = 0 as n — co. But then u, — 0, and as
[z] =2 +Y is closed, 0 € [z]. Thus we have [z] = [0], and ||[z]|| = 0 implies that [z] = [0].

Furthermore, we have
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o]l = inf flul|
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inf flaul| = |of nf Jlul = ||[]|
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and
[[z] + [2']| = inf Jlul| = lnf IIU+’UH

u€[z+az’] u€[z],ve
< inf Jull + inf o] = \|[£C]||+||[$]||-
u€lz] vE[z’]

As such, ||-]| is a norm.

We now show that X/Y is complete with respect to this norm. Let {[z,]} be a sequence
in X/Y such that Y ., |[[x,]|| converges. We show that Y -, [x,] converges; then by
Exercise 2.2 of Homework Assignment 2, we obtain that X/Y is complete.

Note that for each n € N, there must exist some u,, € [z,,] such that [[u,| < [[[z,]]| + 57
as ||[zn]|| = inf e[z, [|u]|. Then we have
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$0 >0 unll < S0t lzn]ll +1 < oo and Y07, [|lun|| converges. As X is Banach,
Zn 1 Up, must converge as well. Call the limit of this series u. Now note that the map
X — X/Y given by z + [z] is continuous, as ||[z]|| = inf,c[y [lul| < [Jz]|. As such, we
obtain
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so that > 7 [z,] converges. Thus we conclude that X/Y is Banach.

Let 47 be a Hilbert space and let Y be a closed linear subspace of 7.

Define ([z], [y]) := (7(x),7(y)) where 7 : # — Y+ denotes the projection of 7 onto Y.
We define the projection 7 as follows. Let x € 5. As Y is a closed linear subspace and
thus convex and non-empty, there exists a unique ¢ € Y such that

|z —qll = inf{[lz -yl :y € Y}

Then define m(xz) = z — q. Note that 7(z) is uniquely determined by the property that
(x —m(x)) LY.

Claim. 7 : # — Y= is a linear map.

Proof. Let a, 3 € F and z,2’ € . Then, for any w € Y+,
(az + B2’ — ar(z) — pr(z’),w) = a(x — m(z),w) + B(z' — m(2"),w) =0

as (z—n(x)) LY+ and (2/ —7(2")) L Y*. By uniqueness of the projection, we must have
m(ax + Ba') = an(x) + Br (). O

Claim. (-,-) is an inner product.

Proof. First observe that (-,-) is well defined, as two different representatives of an equiv-
alence class [z] € /Y differ by an element of Y, and Y is precisely the kernel of
T H =YL

Let [z],[y],[2] € #£/Y and «a, € F. We have ([0],[0]) = (7(0),7(0)) = (0,0) = 0. Now
suppose ([z], [z]) = 0. Then (n(z),n(z)) =0, so 7(z) =0, and « € kerm =Y. But then
[x] = 0, by definition of the quotient space /Y.



We have

([z], [v]) = (x(2), 7(y)) = (x(y), 7w(x)) = ([z], [v])

and
(afz] + Blyl, [2]) = (7(az + By), 7 (2))
= a(m(z),7(2)) + B(n(y), 7(2)) = a[z], [z]) + B([y], [2])

so we conclude that (-,-) is indeed an inner product. O
Claim. ||[z]|| = |7 (z)||, where ||[z]]| is the norm defined in part (a).

Proof.

=]l = uiél[fu] lull = inf lz (@ —w)] = [I=(2)]]
by definition of the projection . O

Then we have

(2], [2]) = (m(w), w(2)) = |l(2)|* = ||[2])”

and thus the norm and inner product on /Y are compatible. As such, we get complete-
ness of /Y with respect to the inner product by part (a).

Problem 3.3 Let (X, ||]|) be a Banach space.

(a) For each k € N, let A, C X be compact and r, € R, r, > 0, such that Ax; C A, + B, (0),
and Y po, 7x < co. We show that A :=J;—; Ak is compact.
We use the following extension of the Heine-Borel theorem.
Theorem (Extension of Heine-Borel). Let (M, d) be a metric space. Then M is compact

if and only if it is complete and totally bounded. Here, totally bounded means that for every
€ > 0, there exist finitely many x1,...,2, € M such that M = U}_, B.(zy).

Let d(z,y) := ||z — y|| be the metric on X. Clearly, A is complete, as it is a closed subspace
of the complete metric space X. We now show that A is totally bounded. Let € > 0 be given.
Set 6 = ;- ri + 1 and choose N such that Y ;7 r < Zk:_11 Tk + 55. Since each of the
Aq,..., Ay is compact, there exist x1,...,x € U;vzl A; with U;V:1 A; C UiLzl Be/s(;).
We now show that A C (X, Be(x:). Let y € 4; then d(y, U, A,) = 0, so there must
exist some minimal M such that d(y, Ay) < €/(39).

If M < N, then y € Ujvzl A; C UiL:1 Beys(xi) C UiL:1 B(x;) as § > 1 by construction.
Now suppose M > N. Then there exists a € Ay such that d(y,a) < €/(35). Then
d(a, U;\;l Aj) < Z,i/[:N rr as a € Ay (by assumption on the A,y; being contained in
A+ By, (0)). Furthermore, by choice of N, we have Z,I:I:N Th < D pey Th— Zg;ll e < 35-
As such, we have d(a, v;) < 55+ 55 forsome i € {1,..., L} as the B (ss)(w;) cover U;VZI A;.
For this i, we have

d(y,z;) < d(y,a) +d(a,z;) < €/(35) +2¢/(35) =¢/d < e

as 0 > 1,80 y € B(x;).

Thus, we conclude that A is covered by Be(x1),...,Bc(zr), and A is totally bounded. As
A was already shown to be complete, it is compact by the extension of the Heine-Borel
theorem.



(b) Let p > 1 and let {ry} be a sequence in R such that r;, > 0 for all k € Nand Y ;- 7x < 0.
We show that
K={z={xp} €’ :|zy| <7y for all k € N}

is compact. Define the sets Ay, As,... by
Ar={z={zn} €|z, <rpforall 1 <n <k, and |z,| <7,/(n—1) for all n > k}

We show that these sets Ay, As, ... satisfy the assumptions in part (a). We start by showing
that each Ay is compact. Clearly, each Ay is closed as it is defined by equalities, so it must
be complete (as [P is complete). We now show that Ay is totally bounded. Let € > 0 be
given, and choose K > k with 1/K < ¢, and Z;’il rj— Z;il r; < €. Furthermore, assume
without loss of generality that m; < 1 for all { > K. For each 1 < j < K, let Y; a finite
set of {y;1,...,yj0;} C F such that {p € F: [p| < r;} C Uf:Jl Brin{1/2,e}/x (y5,1), and
lyj.i| < rj for each i. Such a set necessarily exists, as {p € F : [p| < r;} is clearly compact
in F (as it is closed and bounded), so we can use the total boundedness property. Then the
set Y = Y1 X+ x Y x {0} x {0} -+ C ¥ is also finite. We show that Ay C U, cy Baa/r(y)-
Let © € Ayg; then set o’ = (z1,...,7k,0,0,...) € £P. There exists some y € Y such that
ZnK:]_ |z, — yn| < Kmin{1/2,e}/K = min{1/2,¢e} by choice of the Y;. Then we have
2" = ylly = S0y e, —yl? < Sy |2}, —y| < Ke/K = e. Note that [2], —ya|? < [a], =y
as |z, — yn| < min{1/2,e}/K by choice of the Y,,.

We have
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by choice of K, so z € Bya/p(y). As such, we can cover Ax by U,cy Baci/r(y) and Y is
finite, so Ay is totally bounded and compact.

Now, we clearly have U;il A = K, and K is evidently closed, so by part (a), K is compact.



