Problem 3.1 We use Fourier series to show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. By Corollary 3.57 of Rynne \& Youngson, we know that the set

$$
E=\left\{e_{n}(x)=(2 \pi)^{-1 / 2} e^{i n x}: n \in \mathbb{Z}\right\}
$$

is an orthonormal basis for $L_{\mathbb{C}}^{2}[-\pi, \pi]$.
Setting $f(x)=x$ on $[-\pi, \pi]$, we have

$$
\|f\|^{2}=\int_{-\pi}^{\pi} x \bar{x} d x=\int_{-\pi}^{\pi} x^{2} \mathrm{~d} x=\frac{2}{3} \pi^{3}
$$

Now let $n \in \mathbb{Z} \backslash\{0\}$. We compute (uv)' $=u{ }^{\prime} v+u v^{\prime}$ int $u v^{\prime}=u v-i n t u ' v$

$$
\begin{aligned}
(2 \pi)^{1 / 2}\left(f, e_{n}\right) & =\int_{-\pi}^{\pi} x e^{i n x} \mathrm{~d} x \\
& =\left.\frac{1}{i n}\left(x e^{i n x}\right)\right|_{-\pi} ^{\pi}-\frac{1}{i n} \int_{-\pi}^{\pi} e^{i n x} \mathrm{~d} x \\
\int_{-\pi}^{\pi} e^{i n x} \mathrm{~d} x & =\frac{1}{i n} e^{i n \pi}-\frac{1}{i n} e^{-i n \pi} \\
& =\frac{2}{n} \frac{e^{i n \pi}-e^{-i n \pi}}{2 i}=2 \sin (n \pi) / n=0 \\
\left.\left(x e^{i n x}\right)\right|_{-\pi} ^{\pi} & =\pi e^{i \pi n}+\pi e^{-i \pi n}=2 \pi \cos (n \pi)=2 \pi(-1)^{n} \\
(2 \pi)^{1 / 2}\left(f, e_{n}\right) & =\frac{2 \pi(-1)^{n}}{i n} .
\end{aligned}
$$

Furthermore, we have

$$
(2 \pi)^{1 / 2}\left(f, e_{0}\right)=\int_{-\pi}^{\pi} x e^{0 i x} \mathrm{~d} x=\int_{-\pi}^{\pi} x \mathrm{~d} x=0
$$

as $f(x)=x$ is an odd function on $[-\pi, \pi]$. Using Parseval's theorem, we obtain

$$
\begin{aligned}
\frac{2}{3} \pi^{3}=\|f\|^{2} & =\sum_{n=-\infty}^{\infty}\left|\left(f, e_{n}\right)\right|^{2} \\
& =\sum_{n=-\infty}^{-1}\left|\frac{2 \pi(-1)^{n}}{(2 \pi)^{1 / 2} i n}\right|^{2}+0+\sum_{n=1}^{\infty}\left|\frac{2 \pi(-1)^{n}}{(2 \pi)^{1 / 2} i n}\right|^{2} \\
& =4 \pi \sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

so $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
Problem 3.2 (a) Let X be a Banach space and suppose Y is a closed linear subspace of X. We show that X / Y is again a Banach space with norm $\|[x]\|=\inf _{u \in[x]}\|u\|$.
We first show that this newly defined norm is in fact a norm. Let $[x],\left[x^{\prime}\right] \in X / Y$ and $\alpha \in \mathbb{F}$.
Clearly, we have $\|[0]\|=0$, as $0 \in Y$. Suppose $\|[x]\|=0$. Then $\inf _{u \in[x]}\|u\|=0$, and there exists a sequence $\left\{u_{n}\right\} \subset[x]$ such that $\left\|u_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. But then $u_{n} \rightarrow 0$, and as $[x]=x+Y$ is closed, $0 \in[x]$. Thus we have $[x]=[0]$, and $\|[x]\|=0$ implies that $[x]=[0]$.
Furthermore, we have

$$
\begin{aligned}
\|\alpha[x]\| & =\|[\alpha x]\|=\inf _{u \in[\alpha x]}\|u\| \\
& =\inf _{u \in[x]}\|\alpha u\|=|\alpha| \inf _{u \in[x]}\|u\|=\|[x]\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|[x]+\left[x^{\prime}\right]\right\| & =\inf _{u \in\left[x+x^{\prime}\right]}\|u\|=\inf _{u \in[x], v \in\left[x^{\prime}\right]}\|u+v\| \\
& \leq \inf _{u \in[x]}\|u\|+\inf _{v \in\left[x^{\prime}\right]}\|v\|=\|[x]\|+\left\|\left[x^{\prime}\right]\right\| .
\end{aligned}
$$

As such, $\|\cdot\|$ is a norm.
We now show that X / Y is complete with respect to this norm. Let $\left\{\left[x_{n}\right]\right\}$ be a sequence in X / Y such that $\sum_{n=1}^{\infty}\left\|\left[x_{n}\right]\right\|$ converges. We show that $\sum_{n=1}^{\infty}\left[x_{n}\right]$ converges; then by Exercise 2.2 of Homework Assignment 2, we obtain that X / Y is complete.
Note that for each $n \in \mathbb{N}$, there must exist some $u_{n} \in\left[x_{n}\right]$ such that $\left\|u_{n}\right\| \leq\left\|\left[x_{n}\right]\right\|+\frac{1}{2^{n}}$ as $\left\|\left[x_{n}\right]\right\|=\inf _{u \in\left[x_{n}\right]}\|u\|$. Then we have

$$
\sum_{n=1}^{N}\left\|u_{n}\right\| \leq \sum_{n=1}^{N}\left\|\left[x_{n}\right]\right\|+\frac{1}{2^{n}}
$$

so $\sum_{n=1}^{\infty}\left\|u_{n}\right\| \leq \sum_{n=1}^{\infty}\left\|\left[x_{n}\right]\right\|+1<\infty$ and $\sum_{n=1}^{\infty}\left\|u_{n}\right\|$ converges. As X is Banach, $\sum_{n=1}^{\infty} u_{n}$ must converge as well. Call the limit of this series u. Now note that the map $X \rightarrow X / Y$ given by $x \mapsto[x]$ is continuous, as $\|[x]\|=\inf _{u \in[x]}\|u\| \leq\|x\|$. As such, we obtain

$$
\sum_{n=1}^{\infty}\left[x_{n}\right]=\sum_{n=1}^{\infty}\left[u_{n}\right]=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left[u_{n}\right]=\lim _{N \rightarrow \infty}\left[\sum_{n=1}^{N} u_{n}\right]=\left[\lim _{N \rightarrow \infty} \sum_{n=1}^{N} u_{n}\right]=[u]
$$

so that $\sum_{n=1}^{\infty}\left[x_{n}\right]$ converges. Thus we conclude that X / Y is Banach.
(b) Let \mathscr{H} be a Hilbert space and let Y be a closed linear subspace of \mathscr{H}.

Define $([x],[y]):=(\pi(x), \pi(y))$ where $\pi: \mathscr{H} \rightarrow Y^{\perp}$ denotes the projection of \mathscr{H} onto Y^{\perp}. We define the projection π as follows. Let $x \in \mathscr{H}$. As Y is a closed linear subspace and thus convex and non-empty, there exists a unique $q \in Y$ such that

$$
\|x-q\|=\inf \{\|x-y\|: y \in Y\}
$$

Then define $\pi(x)=x-q$. Note that $\pi(x)$ is uniquely determined by the property that $(x-\pi(x)) \perp Y^{\perp}$.
Claim. $\pi: \mathscr{H} \rightarrow Y^{\perp}$ is a linear map.
Proof. Let $\alpha, \beta \in \mathbb{F}$ and $x, x^{\prime} \in \mathscr{H}$. Then, for any $w \in Y^{\perp}$,

$$
\left(\alpha x+\beta x^{\prime}-\alpha \pi(x)-\beta \pi\left(x^{\prime}\right), w\right)=\alpha(x-\pi(x), w)+\beta\left(x^{\prime}-\pi\left(x^{\prime}\right), w\right)=0
$$

as $(x-\pi(x)) \perp Y^{\perp}$ and $\left(x^{\prime}-\pi\left(x^{\prime}\right)\right) \perp Y^{\perp}$. By uniqueness of the projection, we must have $\pi\left(\alpha x+\beta x^{\prime}\right)=\alpha \pi(x)+\beta \pi\left(x^{\prime}\right)$.

Claim. (\cdot, \cdot) is an inner product.
Proof. First observe that (\cdot, \cdot) is well defined, as two different representatives of an equivalence class $[x] \in \mathscr{H} / Y$ differ by an element of Y, and Y is precisely the kernel of $\pi: \mathscr{H} \rightarrow Y^{\perp}$.
Let $[x],[y],[z] \in \mathscr{H} / Y$ and $\alpha, \beta \in \mathbb{F}$. We have $([0],[0])=(\pi(0), \pi(0))=(0,0)=0$. Now suppose $([x],[x])=0$. Then $(\pi(x), \pi(x))=0$, so $\pi(x)=0$, and $x \in \operatorname{ker} \pi=Y$. But then $[x]=0$, by definition of the quotient space \mathscr{H} / Y.

We have

$$
([x],[y])=(\pi(x), \pi(y))=\overline{(\pi(y), \pi(x))}=\overline{([x],[y])}
$$

and

$$
\begin{aligned}
(\alpha[x]+\beta[y],[z]) & =(\pi(\alpha x+\beta y), \pi(z)) \\
& =\alpha(\pi(x), \pi(z))+\beta(\pi(y), \pi(z))=\alpha([x],[z])+\beta([y],[z])
\end{aligned}
$$

so we conclude that (\cdot, \cdot) is indeed an inner product.
Claim. $\|[x]\|=\|\pi(x)\|$, where $\|[x]\|$ is the norm defined in part (a).
Proof.

$$
\|[x]\|=\inf _{u \in[x]}\|u\|=\inf _{x-u \in Y}\|x-(x-u)\|=\|\pi(x)\|
$$

by definition of the projection π.
Then we have

$$
([x],[x])=(\pi(x), \pi(x))=\|\pi(x)\|^{2}=\|[x]\|^{2}
$$

and thus the norm and inner product on \mathscr{H} / Y are compatible. As such, we get completeness of \mathscr{H} / Y with respect to the inner product by part (a).

Problem 3.3 Let $(X,\|\cdot\|)$ be a Banach space.
(a) For each $k \in \mathbb{N}$, let $A_{k} \subset X$ be compact and $r_{k} \in \mathbb{R}, r_{k}>0$, such that $A_{k+1} \subseteq A_{k}+\overline{B_{r_{k}}(0)}$, and $\sum_{k=1}^{\infty} r_{k}<\infty$. We show that $A:=\overline{\bigcup_{k=1}^{\infty} A_{k}}$ is compact.
We use the following extension of the Heine-Borel theorem.
Theorem (Extension of Heine-Borel). Let (M, d) be a metric space. Then M is compact if and only if it is complete and totally bounded. Here, totally bounded means that for every $\epsilon>0$, there exist finitely many $x_{1}, \ldots, x_{n} \in M$ such that $M=\cup_{k=1}^{n} B_{\epsilon}\left(x_{k}\right)$.
Let $d(x, y):=\|x-y\|$ be the metric on X. Clearly, A is complete, as it is a closed subspace of the complete metric space X. We now show that A is totally bounded. Let $\epsilon>0$ be given. Set $\delta=\sum_{k=1}^{\infty} r_{k}+1$ and choose N such that $\sum_{k=1}^{\infty} r_{k}<\sum_{k=1}^{N-1} r_{k}+\frac{\epsilon}{3 \delta}$. Since each of the A_{1}, \ldots, A_{N} is compact, there exist $x_{1}, \ldots, x_{L} \in \bigcup_{j=1}^{N} A_{j}$ with $\bigcup_{j=1}^{N} A_{j} \subseteq \bigcup_{i=1}^{L} B_{\epsilon / \delta}\left(x_{i}\right)$. We now show that $A \subseteq \bigcup_{i=1}^{L} B_{\epsilon}\left(x_{i}\right)$. Let $y \in A$; then $d\left(y, \bigcup_{n=1}^{\infty} A_{n}\right)=0$, so there must exist some minimal M such that $d\left(y, A_{M}\right)<\epsilon /(3 \delta)$.
If $M \leq N$, then $y \in \bigcup_{j=1}^{N} A_{j} \subseteq \bigcup_{i=1}^{L} B_{\epsilon / \delta}\left(x_{i}\right) \subseteq \bigcup_{i=1}^{L} B_{\epsilon}\left(x_{i}\right)$ as $\delta>1$ by construction.
Now suppose $M>N$. Then there exists $a \in A_{M}$ such that $d(y, a)<\epsilon /(3 \delta)$. Then $d\left(a, \bigcup_{j=1}^{N} A_{j}\right) \leq \sum_{k=N}^{M} r_{k}$ as $a \in A_{M}$ (by assumption on the A_{n+1} being contained in $\left.A_{n}+\overline{B_{r_{k}}(0)}\right)$. Furthermore, by choice of N, we have $\sum_{k=N}^{M} r_{k}<\sum_{k=1}^{\infty} r_{k}-\sum_{k=1}^{N-1} r_{k}<\frac{\epsilon}{3 \delta}$. As such, we have $d\left(a, x_{i}\right) \leq \frac{\epsilon}{3 \delta}+\frac{\epsilon}{3 \delta}$ for some $i \in\{1, \ldots, L\}$ as the $B_{\epsilon /(3 \delta)}\left(x_{i}\right)$ cover $\bigcup_{j=1}^{N} A_{j}$. For this i, we have

$$
d\left(y, x_{i}\right) \leq d(y, a)+d\left(a, x_{i}\right)<\epsilon /(3 \delta)+2 \epsilon /(3 \delta)=\epsilon / \delta<\epsilon
$$

as $\delta>1$, so $y \in B_{\epsilon}\left(x_{i}\right)$.
Thus, we conclude that A is covered by $B_{\epsilon}\left(x_{1}\right), \ldots, B_{\epsilon}\left(x_{L}\right)$, and A is totally bounded. As A was already shown to be complete, it is compact by the extension of the Heine-Borel theorem.
(b) Let $p \geq 1$ and let $\left\{r_{k}\right\}$ be a sequence in \mathbb{R} such that $r_{k}>0$ for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} r_{k}<\infty$. We show that

$$
K=\left\{x=\left\{x_{k}\right\} \in \ell^{p}:\left|x_{k}\right| \leq r_{k} \text { for all } k \in \mathbb{N}\right\}
$$

is compact. Define the sets A_{1}, A_{2}, \ldots by

$$
A_{k}=\left\{x=\left\{x_{n}\right\} \in \ell^{p}:\left|x_{n}\right| \leq r_{n} \text { for all } 1 \leq n \leq k, \text { and }\left|x_{n}\right| \leq r_{n} /(n-1) \text { for all } n>k\right\}
$$

We show that these sets A_{1}, A_{2}, \ldots satisfy the assumptions in part (a). We start by showing that each A_{k} is compact. Clearly, each A_{k} is closed as it is defined by equalities, so it must be complete (as l^{p} is complete). We now show that A_{k} is totally bounded. Let $\epsilon>0$ be given, and choose $K>k$ with $1 / K<\epsilon$, and $\sum_{j=1}^{\infty} r_{j}-\sum_{j=1}^{K} r_{j}<\epsilon$. Furthermore, assume without loss of generality that $r_{l}<1$ for all $l \geq K$. For each $1 \leq j \leq K$, let Y_{j} a finite set of $\left\{y_{j, 1}, \ldots, y_{j, L_{j}}\right\} \subset \mathbb{F}$ such that $\left\{p \in \mathbb{F}:|p| \leq r_{j}\right\} \subseteq \bigcup_{i=1}^{L_{j}} B_{\min \{1 / 2, \epsilon\} / K}\left(y_{j, i}\right)$, and $\left|y_{j, i}\right| \leq r_{j}$ for each i. Such a set necessarily exists, as $\left\{p \in \mathbb{F}:|p| \leq r_{j}\right\}$ is clearly compact in \mathbb{F} (as it is closed and bounded), so we can use the total boundedness property. Then the set $Y=Y_{1} \times \cdots \times Y_{K} \times\{0\} \times\{0\} \cdots \subseteq \ell^{p}$ is also finite. We show that $A_{k} \subseteq \bigcup_{y \in Y} B_{2 \epsilon^{1 / p}}(y)$. Let $x \in A_{k}$; then set $x^{\prime}=\left(x_{1}, \ldots, x_{K}, 0,0, \ldots\right) \in \ell^{p}$. There exists some $y \in Y$ such that $\sum_{n=1}^{K}\left|x_{n}^{\prime}-y_{n}\right|<K \min \{1 / 2, \epsilon\} / K=\min \{1 / 2, \epsilon\}$ by choice of the Y_{j}. Then we have $\left\|x^{\prime}-y\right\|_{p}^{p}=\sum_{n=1}^{K}\left|x_{n}^{\prime}-y\right|^{p} \leq \sum_{n=1}^{K}\left|x_{n}^{\prime}-y\right|<K \epsilon / K=\epsilon$. Note that $\left|x_{n}^{\prime}-y_{n}\right|^{p} \leq\left|x_{n}^{\prime}-y_{n}\right|$ as $\left|x_{n}^{\prime}-y_{n}\right|<\min \{1 / 2, \epsilon\} / K$ by choice of the Y_{n}.
We have

$$
\begin{aligned}
\|x-y\|_{p} & \leq\left\|x-x^{\prime}\right\|_{p}+\left\|x^{\prime}-y\right\|_{p}<\left(\sum_{n=K+1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}+\epsilon^{1 / p} \\
& <\left(\sum_{n=K+1}^{\infty} \frac{r_{n}}{n-1}\right)^{1 / p}+\epsilon^{1 / p} \\
& <2 \epsilon^{1 / p}
\end{aligned}
$$

by choice of K, so $x \in B_{2 \epsilon^{1 / p}}(y)$. As such, we can cover A_{k} by $\bigcup_{y \in Y} B_{2 \epsilon^{1 / p}}(y)$ and Y is finite, so A_{k} is totally bounded and compact.
Now, we clearly have $\bigcup_{k=1}^{\infty} A_{k}=K$, and K is evidently closed, so by part (a), K is compact.

