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1

Banach spaces: norms and separability

We will concentrate on Banach spaces and linear operators between Ba-

nach spaces.

1.1 Norms

A norm on a vector space X is a map ‖ · ‖ : X → R such that

(i) ‖x‖ ≥ 0 for every x ∈ X and ‖x‖ = 0 if and only if x = 0;

(ii) ‖λx‖ = |λ|‖x‖ for every λ ∈ K, x ∈ X; and

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ X.

Any norm defines a distance d(x, y) = ‖x− y‖.

The (closed) unit ball is

BX(0, 1) = {x : ‖x‖ ≤ 1}.

This set is convex, since if x, y ∈ BX and λ ∈ (0, 1) then

‖λx+ (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖ ≤ 1,

and symmetric: if x ∈ BX then −x ∈ BX .

Lemma 1.1 Suppose that N : X → R satisfies (i) and (ii) of the defi-

nition of a norm and in addition the set B := {x : N(x) ≤ 1} is convex.

Then N is a norm on X.
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2 Banach spaces: norms and separability

Proof We only need to prove the triangle inequality, i.e. show that

N(x+ y) ≤ N(x) +N(y).

If N(x) = 0 then x = 0 and N(x + y) = N(y) = N(x) + N(y), so we

can assume that N(x) > 0 and N(y) > 0.

Then x/N(x) ∈ B and y/N(y) ∈ B, so using the convexity of B we

have

N(x)

N(x) +N(y)

(
x

N(x)

)
+

N(y)

N(x) +N(y)

(
y

N(y)

)
∈ B.

So
x+ y

N(x) +N(y)
∈ B,

which means that

N

(
x+ y

N(x) +N(y)

)
=

N(x+ y)

N(x) +N(y)
≤ 1 ⇒ N(x+y) ≤ N(x)+N(y)

as required.

For a related result see Examples 1.

1.2 Examples of Banach spaces

A Banach space is a complete normed space.

The finite-dimensional spaces Rnp and Cnp with elements

x = (x1, . . . , xn), xj ∈ R or C

with norms

‖x‖p :=

 n∑
j=1

|xj |p
1/p

1 ≤ p <∞

and

‖x‖∞ :=
n

max
j=1
|xj |.
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The infinite-dimensional sequence spaces `p(K) of sequences x = (xj)
∞
j=1

(xj ∈ K) such that

‖x‖p :=

∑
j

|xj |p
1/p

<∞

and `∞ of sequences for which

‖x‖∞ := sup
j
|xj | <∞.

Particular useful element of `p are the sequences e(j),

e(j) = (0, 0, . . . , 0, 0, 1, 0, 0, . . .),

the sequence consisting of entirely zeros apart from a single 1 in the jth

place (its components are e
(j)
i = δij).

Definition 1.2 The space c0 is the subspace of `∞ consisting of null

sequences (xj → 0 as j →∞); we equip this space with the `∞ norm.

The `1 and `∞ norm clearly satisfy the triangle inequality, and the

argument for `2 is familiar. For 1 < p <∞ we use Lemma 1.1.

Lemma 1.3 (Minkowski’s inequality in `p spaces) If x, y ∈ `p then

x+ y ∈ `p and

‖x+ y‖`p ≤ ‖x‖`p + ‖y‖`p .

Proof To show that ‖ · ‖p is a norm we can use Lemma 1.1 and show

that the set

B := {x ∈ `p : ‖x‖p ≤ 1} = {x ∈ `p : ‖x‖pp ≤ 1}

is convex, since the only issue is the triangle inequality. We use the fact

that the function t 7→ |t|p is convex1 for all 1 ≤ p <∞: if x, y ∈ B then

‖λx+ (1− λ)y‖pp =
∑
p

|λxj + (1− λ)yj |p

≤
∑
p

λ|xj |p + (1− λ)|yj |p ≤ 1.

1 A twice differentiable function on an interval (a, b) is convex on (a, b) iff its second
derivative is non-negative, see examples.
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We say that two indices 1 ≤ p, q ≤ ∞ are conjugate if

1

p
+

1

q
= 1. (1.1)

The following simple inequality is fundamental.

Lemma 1.4 (Young’s inequality) Let a, b > 0 and let (p, q) be conju-

gate indices with 1 < p, q <∞. Then

ab ≤ ap

p
+
bq

q
. (1.2)

Proof The function ex is convex and so

ab = exp(log a+ log b) = exp

(
1

p
log ap +

1

q
log bq

)
≤ 1

p
elog(ap) +

1

q
elog(bq) =

ap

p
+
bq

q
.

Lemma 1.5 (Hölder’s inequality in `p spaces) Let x ∈ `p and y ∈ `q
with p, q conjugate, 1 ≤ p, q ≤ ∞. Then if z = (x1y1, x2y2, . . .), z ∈ `1
with

‖z‖`1 =

∞∑
j=1

|xjyj | ≤ ‖x‖`p‖y‖`q . (1.3)

Proof For 1 < p <∞, consider

n∑
j=1

|xj |
‖x‖`p

|yj |
‖y‖`q

≤
n∑
j=1

1

p

|xj |p

‖x‖p`p
+

1

q

|yj |q

‖y‖q`q
≤ 1.

So for each n ∈ N
n∑
j=1

|xjyj | ≤ ‖x‖`p‖y‖`q

and (1.3) follows. For p = 1, q =∞,

n∑
j=1

|xjyj | ≤ max
j=1,...,n

|yj |

 n∑
j=1

|xj |

 ≤ ‖x‖`1‖y‖`∞ .
Proposition 1.6 For each 1 ≤ p ≤ ∞, the sequence space `p (equipped

with its standard norm) is complete, and so is c0 (with the `∞ norm).

Proof For the completeness of `p see Functional Analysis I (Theorems

4.8–4.10). For the completeness of c0 see Examples 1.
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More important, perhaps, are spaces of functions.

The space C0([a, b]) of continuous (real or complex-valued) functions

on [a, b] ⊂ R equipped with the supremum norm is a Banach space

(Theorem 4.5 in FA1).

If (Ω,Σ, µ) is a measure space then the space Lp(Ω;µ), 1 ≤ p < ∞,

consists of ‘functions’ on Ω such thatˆ
Ω

|f |p dµ <∞

is a Banach space with norm

‖f‖Lp =

(ˆ
Ω

|f |p dµ

)1/p

. (1.4)

The proof of the triangle inequality for this norm follows as for `p.

The space L∞(Ω) consists of ‘functions’ such that

‖f‖L∞ = ess sup f = inf{M : |f(x)| ≤M µ-almost everywhere}.

Since there are non-zero functions for which ‖f‖Lp = 0 (e.g. taking

the value 1 at all rationals) to make ‖ · ‖Lp into a norm we have to

identify all elements that agree almost everywhere, so strictly Lp(Ω) is

an equivalence class of functions. We will usually (always?) take Ω ⊂ Rn
for some n and let µ be Lebesgue measure. (Translation (if you have not

done the measure theory course): the integral in (1.4) is a generalisation

of the integral you know that allows you to understand what it means

for a much larger class of functions than the ‘regulated functions’ of

Analysis III).

1.3 Density and separability

A subset A of a metric space (X, d) is dense if every x ∈ X can be

approximated arbitrarily closely by an element of A: given x ∈ X and

ε > 0 there exists an a ∈ A such that

d(x, a) < ε.

A metric space is separable if it has a countable dense subset.
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Lemma 1.7 If (X, d) is separable and Y ⊂ X then (Y, d) is also

separable.

Proof Given {xn} that are dense in X, for each n, k ∈ N, if Y contains

a point with d(xn, y) < 1/k call this point yn,k and add it to A. In this

way A is (at most) a countable set.

To show that A is dense, take y ∈ Y and ε > 0. Taking k such

that 1/k < ε/2 and xn ∈ X with d(xn, y) < 1/k, it follows (since

d(xn, y) < 1/k) that there exists yn,k ∈ A such that d(xn, yn,k) < 1/k

and hence

d(yn,k, y) ≤ d(yn,k, xn) + d(xn, y) < 2/k < ε.

Lemma 1.8 Let X be a normed space. The following three statements

are equivalent:

(i) X is separable;

(ii) SX = {x ∈ X : ‖x‖ = 1} is separable; and

(iii) X contains a sequence {x1, x2, x3, . . .} whose linear span is dense.

Note that the linear span of {x1, x2, x3, . . .} consists of finite linear

combinations of the xi.

Proof Lemma 1.7 shows that (i)⇒ (ii). For (ii)⇒ (iii) choose a count-

able dense subset {x1, x2, x3, . . .} of SX : then for any x ∈ X we have

x/‖x‖ ∈ SX , and so for any ε > 0 there exists an xk such that∥∥∥∥xk − x

‖x‖

∥∥∥∥ < ε

‖x‖
.

It follows that ∥∥x− ‖x‖xk∥∥ < ε,

and clearly ‖x‖xk is contained in the linear span of the {xj}.

To show that (iii) implies (i) note that the collection of finite linear

combinations of the {xj} with rational coefficients is countable. This

countable collection is dense: given x ∈ X and ε > 0, choose an element
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of the linear span of {x1, x2, . . .} such that∥∥∥∥∥∥x−
n∑
j=1

αjxj

∥∥∥∥∥∥ < ε

2
,

and then choose qj ∈ Q for j = 1, . . . , n such that

|qj − αj | <
ε

2‖xj‖
.

It then follows from the triangle inequality that∥∥∥∥∥∥x−
n∑
j=1

qjxj

∥∥∥∥∥∥ < ε.

Rn and Cn are separable. C0([a, b]) is separable (this is a consequence

of the Weierstrass Approximation Theorem – Theorem 3.1 in FA1).

Corollary 1.9 `p is separable if 1 ≤ p <∞, and c0 is separable.

In these spaces the linear span of the countable collection {e(j)} is

dense.

Proposition 1.10 `∞ is not separable.

Proof Consider the elements of `∞ that consist of 0 or 1 in each co-

ordinate; these elements form an uncountable set X (Cantor diagonal

argument). Furthermore any two distinct elements of X are a distance

1 apart. Now suppose that S is a dense subset of `∞; it follows that a

different element of S is needed to approximate each element of X, and

so S must be uncountable. It follows that `∞ is not separable.

Proposition 1.11 For any E ⊂ Rn the space Lp(E) is separable for

1 ≤ p <∞, but L∞(E) is not separable.

Proof If E is a compact subset of Rn then this can be obtained as a

corollary of the Weierstrass Approximation Theorem (Theorem 3.1 in

FA1). The general proof for Lp(E) shows that the set of characteris-

tic functions of dyadic cubes satisfies (iii) of Lemma 1.8. For L∞ see

Examples 1.
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1.4 Linear maps

Definition 1.12 An operator T : X → Y is linear if

T (λx+ µy) = λT (x) + µT (y), x, y ∈ X, λ, µ ∈ K.

Recall that T is bounded if there exists M ≥ 0 such that

‖T (x)‖Y ≤M‖x‖X for all x ∈ X

and that a linear operator is continuous if and only if it is bounded

(Theorem 7.3 in FA1).

We denote by B(X,Y ) the collection of all bounded operators from

X into Y and define

‖T‖B(X,Y ) := sup
‖x‖=1

‖T (x)‖Y = sup
x 6=0

‖T (x)‖Y
‖x‖X

.

This is a norm: we need only check the triangle inequality, which we can

do by taking x ∈ X with ‖x‖ = 1 and considering

‖(T + S)x‖Y = ‖Tx+ Sx‖Y ≤ ‖Tx‖Y + ‖Sx‖Y ≤ ‖T‖+ ‖S‖;

it follows that ‖T + S‖ ≤ ‖T‖+ ‖S‖.

Recall the following (Proposition 7.7 in FA1).

Theorem 1.13 If Y is a Banach space then B(X,Y ) is a Banach

space.

Two spaces X and Y are isomorphic if there is a linear map T : X → Y

such that T and T−1 are bounded. They are isometrically isomorphic if

there is a such a T with ‖T‖ = ‖T−1‖ = 1; in this case we write X ' Y .

Note that any linear isometry is automatically injective; if Tx = Ty

then

0 = ‖Tx− Ty‖ = ‖T (x− y)‖ = ‖x− y‖

and so x = y.

Lemma 1.14 If X and Y are Banach spaces and X ' Y then X is

separable if and only if Y is separable.
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Proof The linear isometric T : X → Y will map a dense subspace of X

to a dense subspace of Y , similarly with T−1 : Y → X.

Given a linear operator T : X → Y , we define its kernel

KerT = {x ∈ X : Tx = 0}

and its range

RangeT = {y ∈ Y : y = Tx for some x ∈ X}.

Lemma 1.15 If T ∈ B(X,Y ) then KerT is a closed linear subspace

of X.

Proof It is easy to show that Ker(T ) is a linear subspace: if α, β ∈ K
and x, y ∈ Ker(T ) then

T (αx+ βy) = αTx+ βTy = 0.

Furthermore if xn → x and Txn = 0 then since T is continuous it follows

that Tx = limn→∞ Txn = 0, so Ker(T ) is closed.

Note, however, that the range of a map in B(X,Y ) is not necessarily

closed. Indeed, consider the map from `2 into itself given by

Tx = (x1,
x2

2
,
x3

3
,
x4

4
, . . .).

Then clearly ‖T‖op ≤ 1, so T is bounded. Now consider

y(n) = T (1, 1, . . . , 1︸ ︷︷ ︸
n times

, 0 . . .) =

(
1,

1

2
,

1

3
, . . . ,

1

n
, 0, . . .

)
.

Then clearly y(n) → y with yj = j−1, and since

∞∑
j=1

1

j2
=
π2

6
<∞

it follows that y ∈ `2. However, there is no x ∈ `2 such that T (x) = y:

the only candidate is x = (1, 1, 1, . . .), but this is not in `2 since its `2

norm is not finite.
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Dual spaces of sequence spaces and Lebesgue
spaces

If X is a normed space then its dual space X∗ = B(X,K) is always a

Banach space with norm

‖φ‖X∗ = sup
‖x‖≤1

|φ(x)| (2.1)

(Proposition 6.11 in FA1).

Lemma 2.1 If H is a Hilbert space then H∗ ' H; the map x 7→ fx,

where fx(y) = (y, x) is an antilinear isometry from H onto H∗. We

denote by R : H → H∗ the map R(x) = fx.

We say that a map is antilinear (conjugate linear) if

L(αx+ βz) = ᾱL(x) + β̄L(z).

So for example (and this more or less what we have here), y 7→ (x, y)

is antilinear in y. The map in the above lemma is a linear isometric

isomorphism if H is a real Hilbert space.

Proof The map x 7→ fx is anti-linear, since

fαx+βz = (y, αx+ βz) = ᾱ(y, x) + β̄(y, z).

Given x ∈ H, fx ∈ H∗ since

|fx(y)| = |(y, x)| ≤ ‖y‖‖x‖,

so ‖fx‖H∗ ≤ ‖x‖. However, |fx(x)| = ‖x‖2, and so ‖fx‖H∗ = ‖x‖, i.e.

x 7→ fx is an isometry.

10



Dual spaces of sequence spaces and Lebesgue spaces 11

We now have to show that the map is onto, i.e. every f ∈ H∗ can be

expressed as (·, x) for some x ∈ H. This is precisely the content of the

Riesz Representation Theorem (Theorem 6.14 in FA1).

In the case of `2(R) this shows that (`2)∗ ' `2 via the map x 7→ fx,

where

fx(y) = (y, x) =

∞∑
j=1

x̄jyj .

We now use a very similar map to investigate the dual spaces of `p,

1 ≤ p <∞, and c0. We drop the underlinings on elements of the sequence

spaces to declutter the notation.

Theorem 2.2 For 1 < p, q < ∞ with (p, q) conjugate, (`p) ' (`q)∗,

via the mapping x 7→ Lx, where

Lx(y) =

∞∑
j=1

xjyj . (2.2)

We denote this mapping as Tq : `p → (`q)∗.

The case p = q = 2 here follows from the Riesz Representation Theo-

rem when H is real.

Proof Given x ∈ `p define Lx as in (2.2) above. Then from Hölder’s

inequality

|Lx(y)| =

∣∣∣∣∣∣
∑
j

xjyj

∣∣∣∣∣∣ ≤
∑
j

|xjyj | ≤ ‖x‖`p‖y‖`q , (2.3)

so we do indeed have Lx ∈ (`q)∗. To show that ‖Lx‖(`q)∗ = ‖x‖`p con-

sider the element y ∈ `q given by

yj =

{
|xj |p/xj xj 6= 0

0 xj = 0;

this is in `q since

‖y‖q`q =
∑
j

|yj |q =
∑
j

|xj |q(p−1) =
∑
j

|xj |p <∞,
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as q(p− 1) = p and we have

|Lx(y)| =

∣∣∣∣∣∣
∑
j

xjyj

∣∣∣∣∣∣ =
∑
j

|xj |p =

∑
j

|xj |p
1− 1

p

‖x‖`p = ‖y‖`q‖x‖`p ,

since 1− (1/p) = 1/q.

Since x 7→ Lx is a linear isometry it is injective: if x 6= y then

‖Lx − Ly‖`q∗ = ‖Lx−y‖`q∗ = ‖x− y‖`p .

We now show that this is surjective; i.e. that any L ∈ (`q)∗ can be

written as Lx for some x ∈ `p.

If we do have L = Lx then for each ej (the element of `p with (ej)i =

δij) we must have

L(ej) = Lx(ej) = xj .

If x defined component-wise in this way is an element of `p then for any

y ∈ `q we have y =
∑
j yjej , and since L is continuous

L

 ∞∑
j=1

yjej

 = L

 lim
n→∞

∞∑
j=1

yjej

 = lim
n→∞

L

 ∞∑
j=1

yjej


= lim
n→∞

n∑
j=1

yjL(ej) = lim
n→∞

n∑
j=1

yjxj = Lx(y).

So we need only show that x defined by xj = L(ej) is an element of

`p. To do this consider the sequence φ(n) of elements of `q defined by

φ
(n)
j =

{
|xj |p/xj j ≤ n and xj 6= 0

0 j > n or xj = 0;

then

L(φ(n)) = L

 n∑
j=1

φ
(n)
j ej

 =

n∑
j=1

φ
(n)
j L(ej) =

n∑
j=1

φ
(n)
j xj =

n∑
j=1

|xj |p,
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and so
n∑
j=1

|xj |p = |L(φ(n)| ≤ ‖L‖(`q)∗‖φ(n)‖`q

= ‖L‖(`q)∗

 n∑
j=1

|xj |q(p−1)

1/q

= ‖L‖(`q)∗

 n∑
j=1

|xj |p
1/q

,

which shows that  n∑
j=1

|xj |p
1/p

≤ ‖L‖(`q)∗

and so x ∈ `p as required.

The same is true for one of the endpoints, but not the other.

Theorem 2.3 We have `∞ ' (`1)∗ via the the mapping (2.2), which

we denote by T1 : `∞ → (`1)∗.

Proof Given x ∈ `∞, Hölder’s inequality as in (2.3) shows that Lx
defined as in (2.2) is an element of (`1)∗ with

‖Lx‖(`1)∗ ≤ ‖x‖`∞ .

The equality of norms follows by choosing, for each ε > 0, a j ∈ N such

that |xj | > ‖x‖`∞ − ε, and then considering y ∈ `1 with yi = δije
−iθ,

where xj = |xj |eiθ [note that in the real case this is yi = δijsgn(xj)].

Then

|Lx(y)| = |xj | ≥ (‖x‖`∞ − ε) ‖y‖`1 ,

since ‖y‖`1 = 1. Since this is valid for any ε > 0, it follows that

‖Lx‖(`1)∗ = ‖x‖`∞ .

To show that the map x 7→ Lx is onto we use the same argument as

before and consider x defined by xj = L(ej). It is easy to see that this

is an element of `∞, since ej ∈ `1 and

|xj | = |x̄j | = |L(ej)| ≤ ‖L‖(`1)∗‖ej‖`1 = ‖L‖(`1)∗ .
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However, (`∞)∗ 6' `1 (for a proof of this see later); instead we have

the following.

Theorem 2.4 (c0)∗ = `1.

For a proof see Examples 2.

Similar duality results hold in the Lebesgue spaces Lp, and are proved

in the Measure Theory module.

Theorem 2.5 Suppose that (Ω,F , µ) is a σ-finite measure space. Then

for 1 ≤ p <∞ the space Lq(Ω) is isometrically isomorphic to (Lp(Ω))∗,

where (p, q) are conjugate, via the mapping g 7→ φg, where

φg(f) :=

ˆ
fg dµ.

Note that coupled with (2.1) the result of the previous theorem gives

one way (which is sometimes useful) to find the Lp norm of f for any

1 < q ≤ ∞:

‖f‖Lq = sup
‖g‖Lp=1

∣∣∣∣ˆ fg

∣∣∣∣ .



3

The Hahn–Banach Theorem and some
applications

The Hahn–Banach Theorem guarantees that a linear functional defined

on a subspace of X can be extended to a linear functional defined on

the whole of X without increasing its norm.

3.1 Statement of the Hahn–Banach Theorem

But first, here is an easy version in a Hilbert space.

Lemma 3.1 Let H be a Hilbert space and U a closed linear subspace.

If f ∈ U∗ then f has an extension to an element F ∈ H∗ such that

F (x) = f(x) for every x ∈ U and ‖F‖ = ‖f‖.

Proof U is a Hilbert space with the same norm/inner product as H.

By the Riesz Representation Theorem (FA1 Theorem 6.14) there exists

v ∈ U with ‖v‖ = ‖f‖U∗ such that f(u) = (u, v) for every u ∈ U . Define

F (u) = (u, v) for every u ∈ H; then ‖F‖H∗ = ‖v‖ = ‖f‖U∗ .

In the rest of this chapter we will explore consequences of the Hahn–

Banach Theorem in a Banach space.

Theorem 3.2 (Hahn–Banach) Let X be a Banach space and U a

subspace of X. If f ∈ U∗ then f has an extension to an element F ∈ X∗,
i.e. F (x) = f(x) for every x ∈ U , such that ‖F‖X∗ = ‖f‖U∗ .

15
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3.2 Some applications of the Hahn–Banach Theorem

As an immediate application, we prove the existence of a particularly

useful class of linear functionals, and show therefore that understanding

linear functionals is in some way enough to understand elements of X.

Corollary 3.3 (Support functional) Let x ∈ X. Then there exists an

f ∈ X∗ such that ‖f‖X∗ = 1 and f(x) = ‖x‖.

Proof Define f̂ on the linear space U spanned by x as

f̂(αx) = α‖x‖.

Then f̂(x) = ‖x‖ and |f̂(z)| ≤ ‖z‖ for all z ∈ U . Extend f̂ to an f ∈ X∗;
then ‖f‖X∗ = 1 and f(x) = f̂(x) = ‖x‖.

The following simple corollary shows that X∗ is rich enough to dis-

tinguish between elements of X.

Corollary 3.4 (X∗ separates points) Let x, y ∈ X. If f(x) = f(y) for

every f ∈ X∗ then x = y.

Proof If x 6= y then by the previous lemma there exists an f with

‖f‖X∗ = 1 such that f(x)− f(y) = f(x− y) = ‖x− y‖ 6= 0.

The next result is a key ingredient in many subsequent proofs.

Corollary 3.5 (Closest point witness) Let Y be a proper closed sub-

space of a Banach space X and let x ∈ X \ Y . Set

d = inf{‖x− y‖ : y ∈ Y }.

Then there is a φ ∈ X∗ such that ‖φ‖ = 1, φ(y) = 0 for every y ∈ Y ,

and φ(x) = d.

The functional φ shows that x is at least a distance d from Y , since

d = φ(x) = φ(x− y) ≤ ‖φ‖‖x− y‖ = ‖x− y‖.

Proof Let Z = span{Y ∪{x}} and define φ : Z → R by φ(y+λx) = λd

for y ∈ Y and λ ∈ R. To see that φ is bounded on Z, observe that

|φ(y + λx)| = |λ|d ≤ |λ|‖x− (−y/λ)‖ = ‖λx+ y‖
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since (−y/λ) ∈ Y and d is the distance between x and Y . So ‖φ‖ ≤ 1.

To see that ‖φ‖ ≥ 1 take yn ∈ Y such that

‖x− yn‖ ≤ d
(

1 +
1

n

)
;

then

d = φ(−yn + x) ≥ n

n+ 1
‖x− yn‖

and so ‖φ‖ ≥ n/n+ 1 for every n, i.e. ‖φ‖ ≥ 1.

We now extend φ to X using the Hahn–Banach Theorem.

We have already seen that (`1)∗ ' `∞; we know that `1 is separable

but that `∞ is not separable. So in general separability of X does not

imply that X∗ is separable. However, the converse is true.

Lemma 3.6 If X∗ is separable then X is separable.

Proof Since X∗ is separable, the unit sphere in X∗ is separable (by (i)

⇒ (ii) in Lemma 1.8). Let (fn) be a countable dense subset of SX∗ . For

each n there exists an xn ∈ X with ‖xn‖ = 1 such that |fn(xn)| ≥ 1/2,

by the definition of the norm in X∗.

We now show that M , the closed linear span of the (xn), is all of X,

and hence (by (iii)⇒ (i) of Lemma 1.8) X is separable. Suppose that the

closed linear span is not all of X. Then M is a proper closed subspace of

X, and so Corollary 3.5 provides an f ∈ X∗ with ‖f‖ = 1 and f(x) = 0

for every x ∈M . But then f(xn) = 0 for every n and so

1

2
≤ |fn(xn)| = |fn(xn)− f(xn)| ≤ ‖fn − f‖‖xn‖ = ‖fn − f‖

for every n, which contradicts the fact that {fn} is dense in SX∗ .

Note that this shows that (`∞)∗ 6' `1, because `1 is separable and `∞

is not, and separability is preserved under isometric isomorphisms.
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Proof of the Hahn–Banach Theorem

One can prove the Hahn–Banach Theorem in a separable Banach space

without using Zorn’s Lemma, see Examples 3, but we will give the proof

for an arbitrary Banach space.

4.1 Zorn’s Lemma

In order to state Zorn’s Lemma (which in fact is more of an axiom,

since it is equivalent to the axiom of choice) we need to introduce some

auxiliary concepts.

Definition 4.1 A partial order on a set P is a binary relation � on

P such that
(i) a � a for all a ∈ P ,

(ii) a � b and b � a implies that a = b, and

(iii) a � b and b � c implies that a � c.

Definition 4.2 A subset C of P in which all elements can be ordered

is called a chain: i.e. for all a, b ∈ C, either a � b or b � a (or both, in

which case a = b).

An element b ∈ P is an upper bound for a subset S of P if s � b for

all s ∈ P . An element m of P is maximal if m � a for some a ∈ P

implies that a = m.

Lemma 4.3 (Zorn’s Lemma) Let P be a non-empty partially ordered

set. If every chain in P has an upper bound then P has at least one

maximal element.

18
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4.2 The Hahn–Banach Theorem: real case

In fact we will prove a result that allows for upper bounds on f : U → R
in terms of a sublinear functional.

If V is a vector space over R then a function p : V → R is sublinear if

p(x+ y) ≤ p(x) + p(y) and p(λx) = λx, λ ≥ 0.

We say that p is a seminorm if additionally p(λx) = |λ|p(x) for every

λ ∈ K. Note that if p is a seminorm then p(x) ≥ 0 for every x ∈ X

(p(0) ≤ p(−x) + p(x) = 2p(x)); and that if ‖ · ‖ is a norm on X then for

any M > 0, M‖ · ‖ defines a seminorm on X (actually, it defines another

norm, and any norm is also a seminorm).

Theorem 4.4 (Sublinear Hahn–Banach Theorem) Let X be a real

vector space, and U a subspace of X. Suppose that f : U → R is linear

and satisfies

f(x) ≤ p(x) for all x ∈ U.

Then there exists a linear map F : X → R such that F (x) = f(x) for all

x ∈ U and

F (x) ≤ p(x) for all x ∈ X.

Furthermore, if p is a seminorm then

|F (x)| ≤ p(x) for all x ∈ X.

In particular any f ∈ U∗ has an extension F ∈ X∗ with ‖F‖X∗ = ‖f‖U∗ .

The final statement will be the most useful version of the theorem for

us in what follows.

Proof We will apply Zorn’s Lemma to all possible extensions g of f

satisfying the bound g(x) ≤ p(x). More precisely, consider the collection

P of all possible extensions of g of f to subspaces G, i.e. the collection of

linear functionals g : G→ R for some subspace G of X such that g = f

on U and

g(x) ≤ p(x) for every x ∈ G.

Then P is non-empty, since (U, f) ∈ P .
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We define an order on P by defining (G, g) � (H,h) if h is an extension

of g, i.e. H ⊇ G and h = g on G.

Now, any chain C = {(gi, Gi)} has an upper bound, namely the pair

(G∞, g∞), where

G∞ =
⋃
i

Gi

and

g∞(x) = gi(x) x ∈ Gi.

Note that g∞ is well defined, since any two elements in C are ordered: if

x ∈ Gj ∩Gi then either (Gj , gj) � (Gi, gi) (or vice versa), and we know

that gi = gj on Gj , since gi extends gj .

Similarly, g∞ satisfies g∞(x) ≤ p(x) for every x ∈ G∞, since this

bound holds for (Gi, gi) when x ∈ Gi. Also, g∞ is linear: if x, y ∈ G∞,

then there exists Gi such that x, y ∈ Gi (x ∈ Gi, y ∈ Gj , and Gi ⊃ Gj
or Gj ⊃ Gi).

Since any chain has an upper bound, P must have a maximal element

(Y, g). We want to show that Y = X. If not, then there exists z ∈ X \Y ;

we want to show that in this case we can extend g to the linear span

of Y ∪ {z}, which is a space strictly larger than Y . This contradicts the

maximality of (Y, g), and so Y = X.

We want to set F (u + αz) = g(u) + αc for some choice of c ∈ R; the

only issue is how to choose c so that

g(u) + αc ≤ p(u+ αz) (4.1)

for every choice of α ∈ R and every u ∈ Y . We know (by assumption)

that this holds for α = 0, so we have to guarantee that we can find c

such that (i) for α > 0 we have (dividing by α)

c ≤ p
(u
α

+ z
)
− g(u)

α
u ∈ Y

and (ii) for every α < 0 we have (dividing by −α)

c ≥ g(u)

−α
− p

(
u

−α
− z
)

u ∈ Y.

Since Y is a linear subspace and g is linear this is the same as requiring

g(v)− p(v − z) ≤ c ≤ p(v + z)− g(v) for every v ∈ Y. (4.2)
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We show that the right-hand side is bounded below using the triangle

property for p: take v1, v2 ∈ Y , and then

g(v1) + g(v2) = g(v1 + v2)

≤ p(v1 + v2) = p(v1 − z + v2 + z)

≤ p(v1 − z) + p(v2 + z)

and so

g(v1)− p(v1 − z) ≤ −g(v2) + p(v2 + z) v1, v2 ∈ Y.

Hence we an find a c to ensure that (4.2) holds.

We can therefore extend (Y, g) to a linear functional F defined on H,

the span of Y and z, that still satisfies F (x) ≤ p(x) for all x ∈ H. This

contradicts the maximality of (g∗, G∗), so G∗ = X.

This proves the result for sublinear functions.

If p is a seminorm then we have

F (x) ≤ p(x) and − F (x) = F (−x) ≤ p(−x) = p(x),

and so |F (x)| ≤ p(x). To prove the result for norms we only need to

show that

p(x) = M‖x‖

defines a seminorm; but this is trivial.

4.3 The Hahn–Banach Theorem: complex case

To extend the Hahn–Banach Theorem to the complex case (when ele-

ments of V ∗ map elements of V to complex numbers), first observe that

any complex vector space V can be viewed as a real vector space by

only allowing scalar multiplication by real numbers, we call this space

VR. This does not effect the elements of the space – for us, the main

significance is that an element φ ∈ V ∗R is a map from V into R that is

linear in the sense that

φ(α+ βy) = αφ(x) + βφ(y)

for all real, but not complex, α and β.
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Lemma 4.5 Let V be a complex vector space. Given any linear func-

tional f : V → C there exists a unique linear φ : VR → R such that

f(v) = φ(v)− iφ(iv) for all v ∈ V. (4.3)

If V is a normed space and f ∈ V ∗ then ‖φ‖V ∗R = ‖f‖V ∗ . Conversely,

if φ ∈ (VR)∗ then f defined by (4.3) is an element of V ∗ with ‖f‖V ∗ =

‖φ‖V ∗R .

Note that it is also immediate that if |f(v)| ≤ p(v) then this is inher-

ited by φ, since

|f(v)|2 = |φ(v)|2 + |φ(iv)|2 ⇒ |φ(v)| ≤ |f(v)| ≤ p(v).

The equality in the case of a normed space requires some proof.

Proof If v ∈ V then

f(v) = φ(v) + iψ(v),

where φ, ψ ∈ (VR)∗ [these maps are linear because we allow only real

scalar multiples in the definition of ‘linearity’ in V ∗R ]. Since

φ(iv) + iψ(iv) = f(iv) = if(v) = iφ(v)− ψ(iv)

it follows that φ(iv) = −ψ(v) which yields (4.3).

Now for any x ∈ X we have from (4.3)

|f(x)|2 = |φ(x)|2 + |φ(ix)|2 ≥ |φ(x)|2 (4.4)

and so |f(x)| ≥ |φ(x)| for every x ∈ X which implies that ‖f‖ ≥ ‖φ‖.

For the reverse inequality, observe that for any x we can write

|f(x)| = eiθf(x)

for some θ ∈ R. So

|f(x)| = eiθf(x) = f(eiθx) = φ(eiθx)− iφ(ieiθx).

Since |f(x)| is real we must have, for all x ∈ V ,

|f(x)| = φ(eiθx) ≤ |φ(eiθx)| ≤ ‖φ‖‖eiθx‖ = ‖φ‖‖x‖,

and so ‖f‖ ≤ ‖φ‖.
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For the complex version of the Hahn–Banach Theorem we require our

bounding functional p to be at least a seminorm, i.e. p : X → [0,∞);

p(λx) = |λ|p(x)| for all x ∈ X, λ ∈ K; p(x+ y) ≤ p(x) + p(y).

Theorem 4.6 (Seminorm Hahn–Banach Theorem) Let X be a real

or complex vector space, U a subspace of X, and p a seminorm on X.

Suppose that f : U → K is linear and satisfies

|f(x)| ≤ p(x) for all x ∈ U.

Then there exists a linear map F : X → K such that F (x) = f(x) for all

x ∈ U and

|F (x)| ≤ p(x) for all x ∈ X.

In particular, if X is a normed space then any f ∈ U∗ can be extended

to some F ∈ X∗ with ‖F‖X∗ = ‖f‖U∗ .

Proof There exists φ ∈ (UR)∗ such that f(v) = φ(v) − iφ(iv) as in

Lemma 4.5, and then

|φ(w)| ≤ p(w)

for all w ∈ UR. We can now use the real Hahn–Banach Theorem to

extend φ from UR to Φ: XR → R, and then define

F (u) = Φ(u)− iΦ(iu),

which provides an extension of f .

To show that F is linear, it is clear that F (u+v) = F (u)+F (v), since

Φ has this property. We therefore only need to show that F (λu) = λF (u)

for λ ∈ C; taking λ = α+ iβ we have

F (λu) = F (αu+ iβu)

= Φ(αu+ iβu)− iΦ(iαu− βu)

= αΦ(u) + βΦ(iu)− αiΦ(iu) + βiΦ(u)

= α[Φ(u)− iΦ(iu)] + iβ[Φ(u)− iΦ(iu)]

= [α+ iβ]F (u)

as required.

To show that |F (x)| ≤ p(x) we use the same trick as in the proof of

Lemma 4.5. Suppose that

|F (x)| = eiθF (x);
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then

|F (x)| = F (eiθx) = Φ(eiθx)− iΦ(ieiθx),

and since |F (x)| is real we have

|F (x)| = Φ(eiθx) ≤ |Φ(eiθx)| ≤ p(eiθx) = |eiθ|p(x) = p(x).
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Separation theorems

We now want to apply the Hahn–Banach Theorem to obtain a geometric

‘separation theorem’.

We will need to following lemma for the proof.

Lemma 5.1 If C is an open convex subset of a Banach space X with

0 ∈ C we define the Minkowski functional of C by setting

pC(x) = inf{λ > 0 : λ−1x ∈ C} for each x ∈ X.

Then pC is a sublinear functional on X,

C = {x : pC(x) < 1}

and there exists a constant c > 0 such that

0 ≤ pC(x) ≤ c‖x‖ for every x ∈ X. (5.1)

Proof To see that pC is sublinear when C is convex, take α > pC(x)

and β > pC(y); then α−1x, β−1y ∈ C, and since C is convex

α

α+ β
α−1x+

β

α+ β
β−1y =

x+ y

α+ β
∈ C.

It follows that pC(x + y) ≤ α + β, and since α, β were arbitrary, we

obtain

pC(x+ y) ≤ pC(x) + pC(y)

as required.

25
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Since C is open and 0 ∈ C, C contains an open ball B(0, δ) for some

δ > 0, and so

‖z‖ < δ ⇒ z ∈ C ⇒ |pC(z)| ≤ 1

and then (5.1) follows since for any x ∈ C we can consider

z =
δ

2

x

‖x‖
.

Finally, if x ∈ C then since C is open we have λ−1x ∈ C for some

λ < 1, and so pC(x) ≤ λ < 1; while if pC(x) < 1 then λ−1x ∈ C for some

λ < 1, and since 0 ∈ C and C is convex, x = λ(λ−1x)+(1−λ)0 ∈ C.

Theorem 5.2 (Functional separation theorem) Suppose that X is a

real Banach space and A,B ⊂ X are non-empty, disjoint, convex sets.

(i) If A is open then there exist f ∈ X∗ and γ ∈ R such that

f(a) < γ ≤ f(b) a ∈ A, b ∈ B.

(ii) If A is compact and B is closed then there exist f ∈ X∗, γ ∈ R,

and δ > 0 such that

f(a) ≤ γ − δ < γ + δ ≤ f(b), a ∈ A, b ∈ B.

A simple example of case (ii) is when A = {a} is a point and B is

closed.

Proof (i) Choose a0 ∈ A and b0 ∈ B, and let w0 = b0−a0. Now consider

C = w0 +A−B.

Then C is an open convex set that contains 0. Since A∩B = ∅, w0 /∈ C,

and so pC(w0) ≥ 1.

Let W = Span(w0), and define a linear functional fW on W by setting

fW (αw0) = α, α ∈ R.

If α ≥ 0 then

fW (αw0) = α ≤ αpC(w0) = pC(αw0)

while if α < 0 then

fW (αw0) < 0 ≤ pC(αw0),
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and so fW (w) ≤ p(w) for every w ∈W .

We can therefore use the general Hahn–Banach Theorem to find a

linear extension f : X → R such that

f(x) ≤ pC(x) for every x ∈ X.

Since we have (5.1) this f satisfies

f(x) ≤ pC(x) ≤ c‖x‖.

Since f is linear and pC is sublinear,

−f(x) = f(−x) ≤ pC(−x) = pC(x) ≤ c‖x‖,

and so |f(x)| ≤ c‖x‖, i.e. f is an element of X∗.

By definition for any a ∈ A and b ∈ B we have w0 +a− b ∈ C, and so

1 + f(a)− f(b) = f(w0 + a− b) ≤ pC(w0 + a− b) < 1.

This shows that f(a) < f(b), and so if we define γ = infb∈B f(b) we

obtain

f(a) ≤ γ ≤ f(b) a ∈ A, b ∈ B. (5.2)

To guarantee that the left-hand inequality is in fact strict, suppose

not, i.e. that there exists an a ∈ A such that f(a) = γ. Since A is open

we must have a+ δw0 ∈ A for some δ > 0, and then we would have

f(a+ δw0) = f(a) + δfW (w0) = γ + δ > γ,

which contradicts (5.2).

Note that if A and B are both open then the same argument shows

that

f(a) < γ < f(b), a ∈ A, b ∈ B.

To prove (ii) we set

ε =
1

4
inf{‖a− b‖ : a ∈ A, b ∈ B} > 0

and consider the two open convex sets

Aε := A+B(0, ε) and Bε := B +B(0, ε).
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We can now apply part (i) to find f ∈ X∗ and γ ∈ R such that

f(a) < γ ≤ f(b), a ∈ Aε, b ∈ Bε.

If we let δ = ε/2‖w0‖ then for any a ∈ A we have a+ δw0 ∈ Aε, and

so

f(a) = f(a+ δw0)− δfW (w0) ≤ γ − δ

and similarly γ + δ ≤ f(b) for any b ∈ B.

We can use this to give a characterisation of convex subsets of X that

will be useful later.

Corollary 5.3 Suppose that C is a closed convex subset of X. Then

C = {x : f(x) ≥ inf
y∈C

f(y) for every f ∈ X∗}.

Proof That C is contained in the right-hand side is immediate.

Suppose that x0 /∈ C. Then {x0} is compact and convex, so we can

find f ∈ X∗ such that

f(x0) ≤ γ − δ < γ + δ ≤ f(y), for every y ∈ C.

In particular f(x0) < infy∈C f(y).

We can recast these results in a more geometric form using the fol-

lowing simple lemma.

Definition 5.4 A hyperplane U in X is a codimension 1 subspace of

X, i.e. a maximal proper subspace: U 6= X and if Z is a subspace with

U ⊂ Z ⊂ X then Z = U or Z = X.

Lemma 5.5 The following are equivalent:

(i) U is a hyperplane in X;

(ii) U is a subspace of X with U 6= X but for any x ∈ X \U , the span

of (U, {x}) is X; and

(iii) U = Ker(φ) for some non-zero linear functional φ on X (which

may not be bounded).

For the proof see Examples 3.
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Lemma 5.6 If Y = Ker(φ) is a hyperplane in X then Y is closed if

and only if φ is bounded. Y is dense in X if and only if φ is unbounded.

Proof First, note that since Y 6= X then it cannot be both closed

and dense. So it is enough to show that bounded implies closed, and

unbounded implies dense.

If φ is bounded then it is continuous, so Y = Ker(φ) = φ−1{0} is

closed.

If φ is unbounded then we can find (xn) ∈ X such that ‖xn‖ = 1 but

φ(xn) ≥ n. Now given x ∈ X, consider the sequence

yn = x− φ(x)

φ(xn)
xn.

Then φ(yn) = 0, so yn ∈ Y , and

‖x− yn‖ =

∥∥∥∥ φ(x)

φ(xn)
xn

∥∥∥∥ =
|φ(x)|‖xn‖
|φ(xn)|

≤ |φ(x)|
n

,

and so yn → x and n→∞ and Y is dense.

Corollary 5.7 Suppose that A,B are non-empty convex subsets of X

with A closed and B compact. Then there exists a closed hyperplane that

can be translated so that it separates A and B.
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The second dual and reflexivity

We have seen that (`q)∗ ' `p for 1 ≤ p < ∞ and (p, q) conjugate. It

follows that if we take the ‘second dual’ (i.e. the dual of the dual) then

[(`q)∗]∗ ' (`p)∗ ' `q - we get back to where we started by taking the

dual twice. We now investigate in what sense this is always true. [We will

see that things are a little more subtle than this; for X to be ‘reflexive’

we will require that X∗∗ ' X using a particular linear isometry.]

We write X∗∗ for the space (X∗)∗, i.e. X∗∗ = B(X∗;K).

Lemma 6.1 For any normed space X we can isometrically map X

onto a subspace of X∗∗ via the canonical linear mapping x 7→ x∗∗, where

x∗∗ is the element of X∗∗ defined by setting

x∗∗(f) = f(x) for each f ∈ X∗.

We denote this mapping by ΛX : X → X∗∗.

Proof We have to show that for any x ∈ X, x∗∗ defines a linear func-

tional on X∗ (i.e. an element of X∗∗) with the same norm as x. Given

x ∈ X we set

x∗∗(f) := f(x) for every f ∈ X∗.

Then since

|x∗∗(f)| = |f(x)| ≤ ‖f‖X∗‖x‖X

it certainly follows that x∗∗ ∈ X∗∗ and that ‖x∗∗‖X∗∗ ≤ ‖x‖X .

If we take the element f from Corollary 3.3, for which ‖f‖ = 1 and

30
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f(x) = ‖x‖ then we have

|x∗∗(f)| = |f(x)| = ‖x‖X = ‖x‖X‖f‖X∗

(since ‖f‖X∗ = 1) and it follows that ‖x∗∗‖ ≥ ‖x‖X which yields the

required equality of norms.

In general ΛX does not map X onto X∗∗.

6.1 Reflexive spaces

If x 7→ x∗∗ maps X onto X∗∗ then X is called reflexive, and in this case

it is easy to see that X ' X∗∗. We will see shortly that there are some

key results that are only true in reflexive spaces.

Definition 6.2 A Banach space X is reflexive if ΛX : X → X∗∗ is

onto, i.e. if every F ∈ X∗∗ can be written as x∗∗ for some x ∈ X.

Note that the definition of reflexivity is not that X∗∗ ' X. There are

spaces whose second dual are isometrically isomorphic to X for whose

ΛX is not an isometric isomorphism and these spaces or not reflexive.

The following result is very useful; its proof is a good exercise in using

the definition of reflexivity.

Theorem 6.3 Let X be a Banach space. Then X is reflexive if and

only if X∗ is reflexive.

Proof Suppose that X is reflexive; we want to show that X∗ is reflexive,

i.e. that for any Φ ∈ (X∗)∗∗ = (X∗∗)∗ we can find an f ∈ X∗ such that

“f∗∗ = Φ”, i.e. such that

Φ(F ) = F (f) for every F ∈ X∗∗.

Choose as a candidate f ∈ X∗ the functional defined by

f(x) = Φ(x∗∗),

where x∗∗ = ΛX(x). Clearly f is linear; it is bounded since

|f(x)| = |Φ(x∗∗)| ≤ ‖Φ‖X∗∗∗‖x∗∗‖X∗∗ = ‖Φ‖X∗∗∗‖x‖X .
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We need to check that f∗∗ = Φ.

Since X is reflexive, for any F ∈ X∗∗ we have F = x∗∗ for some

x ∈ X, and so

f∗∗(F ) = f∗∗(x∗∗) = x∗∗(f) = f(x) = Φ(x∗∗) = Φ(F ).

For the converse, suppose that X∗ is reflexive but X is not, i.e. there

is an element F ∈ X∗∗ such that F 6= x∗∗ for any x ∈ X. Then the set

D = {x∗∗ : x ∈ X}

is a proper closed linear subspace of X∗∗, and hence by by Corollary 3.5

there is a non-zero Φ ∈ X∗∗∗ = (X∗∗)∗ such that

Φ(x∗∗) = 0 for all x ∈ X.

Since X∗ is reflexive, we know that Φ = f∗∗ for some f ∈ X∗, and so if

x ∈ X we have

f(x) = x∗∗(f) = f∗∗(x∗∗) = Φ(x∗∗) = 0.

But this means that f = 0, which implies that Φ = 0, a contradiction.

Since any reflexive space satisfies X∗∗ ' X (but not vice versa, as

commented above), and we know that

(c0)∗ ' `1 and (`1)∗ ' (`∞)

the space c0 is not reflexive. [We know that c0 6' `∞ because c0 is

separable and `∞ is not.] Therefore `1 is not reflexive, hence `∞ is not

reflexive. L1 and L∞ are not reflexive either.

6.2 Some examples of reflexive spaces

We now show that all Hilbert spaces are reflexive, and so are `p spaces

for 1 < p <∞. We start with Hilbert spaces.

Proposition 6.4 All Hilbert spaces are reflexive.
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Proof Take F ∈ H∗∗ we need to find x ∈ H such that, for every f ∈ H∗
we have

f(x) = F (f).

We know that the map R : H → H∗ given by x 7→ Lx where

Lx(y) = (y, x) y ∈ H

is a linear (anti-linear in the complex case) isometric isomorphism. Given

any f ∈ H∗ we can write

f(y) = (y,R−1f).

Now, F ◦R : H → K is a bounded antilinear map, so F ◦R : H → K,

defined by setting

F ◦R(x) = F ◦R(x)

is a bounded linear map, i.e. another element of H∗. So we can find an

element y ∈ H such that

(F ◦R)(x) = (x, y)

for every x ∈ H. Since R is a bijection, for any g ∈ H∗ we can choose

x = R−1g and then

F (g) = (R−1g, y) = (y,R−1g) = g(y),

so F (g) = g(y) as required.

Proposition 6.5 The sequence space `p is reflexive if 1 < p <∞.

Proof Take F ∈ (`p)∗∗. We need to find y ∈ `p such that, for every

f ∈ (`p)∗ we have

F (f) = f(y).

Now, we know that

Tq : `q → (`p)∗,

defined by setting

[Tq(x)](y) = x · y

for y ∈ `p, is a linear isometric isomorphism. So given any f ∈ (`p)∗ we

can write

f(y) = T−1
q (f) · y.
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Now, F ◦ Tq : `q → K is both linear and bounded; so F ◦ Tq ∈ (`q)∗.

We can therefore find y ∈ `p such that

(F ◦ Tq)(x) = y · x

for all x ∈ `q. Since Tp : `p → (`q)∗ is a bijection, for any g ∈ (`p)∗ we

can choose x = T−1
p g, and then

F (g) = g(y).

This shows that F = y∗∗, and so `p is reflexive.
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Linear maps between Banach spaces

7.1 The Baire Category Theorem

We now recall the Baire Catgeory Theorem (from Metric Spaces); we

will give a number of interesting applications in functional analysis.

1st version: the countable intersection of large sets is still large.

Theorem 7.1 (Baire Category Thereom) If {Gi}∞i=1 is a countable

family of dense open subsets of a complete metric space (X, d) then

G =

∞⋂
i=1

Gi

is dense in X.

A countable union of open dense sets (G in the theorem) is called

residual. Note that the union of a countable collection of residual sets is

still residual

An alternative formulation is perhaps a little less intuitive. We say that

a subset W and (X, d) is nowhere dense if the closure of W contains no

open sets. Observe that if W is nowhere dense then X \ W̄ is open and

dense: that this set is open is clear; if it were not dense there would be

a point x ∈ X \ W̄ such that B(x, r) ∩X \ W̄ = ∅ for all r sufficiently

small, which would imply that W̄ ⊃ B(x, r), a contradiction.

2nd version: the countable union of small sets cannot be everything.

35
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Corollary 7.2 Let {Fj}∞j=1 be a countable collection of nowhere dense

subsets of a complete metric space (X, d). Then

∞⋃
j=1

Fj 6= X.

A countable union of closed nowhere dense subsets is called meagre.

Proof The sets X \ F̄j are a countable collection of open dense sets. It

follows that
∞⋂
j=1

X \ F̄j = X \


∞⋃
j=1

F̄j


is dense, and in particular non-empty.

7.2 The Principle of Uniform Boundedness

Theorem 7.3 Let X be a Banach space and Y a normed space. Let

S ⊂ B(X,Y ) be a collection of linear operators such that

sup
T∈S
‖Tx‖Y <∞ for each x ∈ X.

Then

sup
T∈S
‖T‖ <∞.

Be careful applying this theorem. You need to know that each element

of S is a bounded linear map from X to Y (this may sound obvious but

it is easy to slip up).

Proof Consider the sets

Fj = {x ∈ X : ‖Tx‖Y ≤ j for all T ∈ S}.

Then by assumption

X =
⋃
j

Fj .

Corollary 7.2 (the BCT, essentially) implies that at least one of the Fj
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is not nowhere dense; since all the Fj are closed, this means that at least

one Fj must contain an open set; so there must exist y ∈ X and r > 0

such that Br(y) ⊂ Fn for some n.

Then for any x with ‖x‖ < r – for which y + x ∈ Br(y) ⊂ Fn – for

every T ∈ S we must have

‖Tx‖ = ‖T (y + x) + T (−y)‖ ≤ n+ ‖Ty‖ ≤ 2n

for some R > 0, since y ∈ Fn. So for any x with ‖x‖ = r/2 we have

‖Tx‖ ≤ 2n for every T ∈ S.

Since T is linear we can write any y ∈ X as y = (2‖y‖/r)(ry/2‖y‖), and

then

‖Ty‖ =
2‖y‖
r

∥∥∥∥T ry

2‖y‖

∥∥∥∥ ≤ R

r
‖y‖.

and the conclusion follows.

Corollary 7.4 (PUB reformulated) Suppose that Tn ∈ B(X,Y ) and

‖Tn‖ is unbounded. Then there exists x ∈ X such that ‖Tnx‖ is un-

bounded.

Proof If not then the PUB shows that ‖Tn‖ is bounded.

Corollary 7.5 Suppose that X and Y are Banach spaces and that

Tn ∈ B(X,Y ). Suppose that

Tx := lim
n→∞

Tnx

exists for every x ∈ X. Then T ∈ B(X,Y ).

Proof It is easy to check that T is linear. The only point is to show

that it is bounded. Since

lim
n→∞

‖Tnx‖

exists it follows that for every x ∈ X the set {Txn} is bounded. The

PUB now show that ‖Tn‖ ≤M for every n ∈ N. It follows that

‖Tx‖ = lim
n→∞

‖Tnx‖ ≤M‖u‖

and so T is bounded.
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7.2.1 Fourier series of continuous functions

We prove that there is a 2π-periodic continuous function f : [−π, π]→ R
such that the Fourier series of f at 0 does not converge, i.e. the partial

sums are unbounded.

The nth partial sum is

fn(x) =
1

2π

n∑
k=−n

(ˆ π

−π
f(t)eikt dt

)
e−ikx.

At x = 0 this gives

f(0) =
1

2π

n∑
k=−n

(ˆ π

−π
f(t)eikt dt

)

=
1

2π

ˆ π

−π
f(t)

(
n∑

k=−n

eikt dt

)
dt.

The kernel is given by

Kn(t) :=

n∑
k=−n

eikt

= e−int(1 + · · ·+ e2int)

= e−int ei(2n+1)t − 1

eit − 1

=
ei(n+ 1

2 )t − e−i(n+ 1
2 )t

e
1
2 it − e−

1
2 it

=
sin(n+ 1

2 )t

sin 1
2 t

,

and so

fn(0) =
1

2π

ˆ π

−π
f(t)

sin(n+ 1
2 )t

sin 1
2 t

dt.

Let

P = {f ∈ C0([−π, π]) : f(−π) = f(π)}

and consider the map Sn : P → R given by f 7→ fn(0).

Using Corollary 7.4 it is enough to show that ‖Sn‖ is unbounded:
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if it is then there must exist an f ∈ P such that |Snf | = |fn(0)| is

unbounded.

We do this by showing that

‖Sn‖ = In :=

ˆ π

−π

∣∣∣∣ sin(n+ 1
2 )t

sin 1
2 t

∣∣∣∣ dt

and that the integral is unbounded (in n).

Clearly ‖Sn‖ ≤ In. To get equality we would like to take f = signKn(t),

but this is not an element of P . This can be overcome by approximating

signKn(t) by a sequence of elements of P , see Examples 5.

To estimate In from below observe that | sin(t/2)| ≤ |t/2|, and so∣∣∣∣ sin(n+ 1
2 )t

sin 1
2 t

∣∣∣∣ ≥ ∣∣∣∣ sin(n+ 1
2 )t

1
2 t

∣∣∣∣ .
We have∣∣∣∣ sin(n+ 1

2 )t
1
2 t

∣∣∣∣ ≥ ∣∣∣∣ sin(n+ 1
2 )t

1
2kπ/(n+ (1/2))

∣∣∣∣ t ∈
[

(k − 1)π

n+ (1/2)
,

kπ

n+ (1/2)

]
.

So ˆ π

−π
|Kn(t)| ≥

n∑
k=1

ˆ kπ/(n+(1/2))

(k−1)π/(n+(1/2))

∣∣∣∣ sin(n+ 1
2 )t

1
2kπ/(n+ (1/2))

∣∣∣∣
=

n∑
k=1

2n+ 1

kπ

ˆ π/(n+1/2)

0

sin(n+ (1/2))tdt

=

n∑
k=1

1

kπ

ˆ π

0

sin tdt = c

n∑
k=1

1

k
∼ c log n.
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Weak and weak-∗ convergence and the
Banach–Alaoglu Theorem

8.1 Weak convergence

Definition 8.1 We say that {xn} ∈ X converges weakly to x ∈ X,

and write xn ⇀ x, if

f(xn)→ f(x) for all f ∈ X∗.

Note that in a Hilbert space, where every linear functional is of the

form x 7→ (x, y) for some y ∈ H, xn ⇀ x if

(xn, y)→ (x, y) for all y ∈ H.

This provides an easy example of a sequence that converges weakly but

does not converge; pick a countable orthonormal set {ej}∞j=1. Then for

any y ∈ H Bessel’s inequality

∞∑
j=1

|(y, ej)|2 ≤ ‖y‖2

shows that the sum converges; it follows that (y, ej)→ 0 as j →∞, and

hence that ej ⇀ 0. But the sequence {ej} does not converge (any two

elements are a distance
√

2 apart).

Lemma 8.2

(i) Strong convergence implies weak convergence;

(ii) weak limits are unique;

(iii) weakly convergent sequences are bounded; and

40
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(iv) if xn ⇀ x then

‖x‖ ≤ lim inf
n→∞

‖x‖n.

Proof (i) If xn → x then for any f ∈ X∗

|f(xn)− f(x)| ≤ ‖f‖X∗‖xn − x‖X → 0 as n→∞,

so f(xn)→ f(x) and hence xn ⇀ x.

(ii) Suppose that xn ⇀ x and xn ⇀ y. Then for any f ∈ X∗, f(x) =

limn→∞ f(xn) = f(y). So by Lemma 3.4, x = y.

(iii) We consider the sequence x∗∗n ∈ X∗∗. Then for every f ∈ X∗ we

know that

f(xn) = x∗∗n (f)

converges, and so is bounded. It follows from the PUB that (x∗∗n ) is

bounded in X∗∗. Since ‖x∗∗‖X∗∗ = ‖x‖X it follows that (xn) is bounded

in X.

(iv) Choose f ∈ X∗ with ‖f‖X∗ = 1 such that f(x) = ‖x‖. Then

‖x‖ = f(x) = lim
n→∞

f(xn),

so

‖x‖ ≤ lim inf
n→∞

|f(xn)| ≤ lim inf
n→∞

‖f‖X∗‖xn‖X ;

the result follows since ‖f‖X∗ = 1.

How can we convert weak convergence to strong convergence? In a

Hilbert space weak convergence plus norm convergence implies strong

convergence. This is true in a larger class of Banach spaces, but the proof

in a Hilbert space is simple.

Lemma 8.3 Let H be a Hilbert space. If xn ⇀ x and ‖xn‖ → ‖x‖
then xn → x.

Proof Observe that

‖x− xn‖2 = (x− xn, x− xn) = ‖x‖2 − 2(x, xn) + ‖xn‖2.

Since xn ⇀ x we have ‖x‖ ≤ lim infn→∞ ‖xn‖ and (x, xn)→ ‖x‖2.
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The following result is often useful.

Lemma 8.4 Suppose that T : X → Y is a compact linear operator.

Then if xn ⇀ in X, Txn → Tx in Y .

Proof First observe that Txn ⇀ Tx in Y ; indeed if f ∈ Y ∗ then observe

that f ◦ T is is an element of X∗, so that xn ⇀ x implies that

f(Txn)→ f(Tx).

Now, if Txn 6→ Tx then there is an ε > 0 and a subsequence (which we

relabel) such that ‖Txn − Tx‖ > ε for every j. Since xn is a bounded

sequence in X and T is compact, {Txn} has a subsequence (which we

relabel again) that converges to some z ∈ Y . If Txn → z then certainly

Txn ⇀ z; but weak limits are unique, and so z = Tx, a contradiction.

Corollary 8.5 Suppose that X,Y are Banach spaces, with Y compactly

embedded in X. Then if yn ⇀ y in Y , yn → y in X.

Proof The identity map T : Y → X is compact.

Weak convergence in `p, 1 ≤ p <∞:

x(n) ⇀ x ⇔ (x(n), y)→ (x, y) for every y ∈ `q,

(p, q) conjugate. For 1 < p <∞ there is a nice characterisation. For an

example showing that the following result is not true in `1 see Examples

5.

Lemma 8.6 Let (xn) be a sequence in `p for 1 < p <∞. Then

x(n) ⇀ x ⇔ x
(n)
k → xk ∀ k and ‖x(n)‖ is bounded.

Proof ⇒ This taking y = ek, and then using the fact that any weakly

convergent sequence is bounded.

⇐ Suppose that ‖x(n)‖ ≤M . Take any y ∈ `q. Then

y = lim
k→∞

k∑
j=1

yjej .
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Given any ε > 0 there exists k such that∥∥∥∥∥∥y −
k∑
j=1

yjej

∥∥∥∥∥∥
`p

<
ε

4M
;

then

|(x(n) − x, y)| = |(x(n) − x,
k∑
j=1

yjej) + (x(n) − x, y −
k∑
j=1

yjej)|

≤ |(x(n) − x,
k∑
j=1

yjej)|+ ‖x(n) − x‖‖y −
k∑
j=1

yjej‖

≤
∑
j

|yj ||(x(n) − x, ej)|+
ε

2
.

Since (x(n), ej)→ (x, ej) for each j it follows that x(n) ⇀ x.

Weak convergence in X = C0([0, 1]): the maps f 7→ f(x) for any fixed

x ∈ [0, 1] is an element of X∗. If fn ⇀ f then fn(x) → f(x) for every

x ∈ [0, 1] (pointwise convergence). Take any subinterval [a, b] ⊂ [0, 1]

then

f 7→
ˆ b

a

f(x) dx

is an element of X∗. Soˆ b

a

fn(x) dx→
ˆ b

a

f(x) dx

for any weakly convergent sequence. (This can be used to show that

pointwise convergence is weaker than weak convergence.)

8.2 Weak closures

We set that a subset A of X is weakly closed if whenever xn ∈ A and

xn ⇀ x, we have x ∈ A. In general this is a stronger property than being

closed: weakly closed implies closed but not vice versa. For example,

the unit sphere in a separable Hilbert space H is closed but not weakly

closed, since we can take a countable orthonormal set (ej); then ej ∈ SH
but ej ⇀ 0 and 0 /∈ SH .
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However, for convex subsets being closed and being weakly closed are

the same.

Proposition 8.7 Closed convex subsets of a Banach space are also

weakly closed.

Proof Using Corollary 5.3 we know that

C = {x : f(x) ≥ inf
y∈C

f(y) for every f ∈ X∗}.

If xn ∈ C and xn ⇀ x then since xn ∈ C we have, for any f ∈ X∗ we

have f(xn) ≥ infy∈C f(y), and so

f(x) = lim
n→∞

f(xn) ≥ inf
y∈C

f(y),

i.e. x ∈ C.

8.3 Weak-∗ convergence

There is another notion of weak convergence, weak-∗ convergence, which

deals with sequences of elements of X∗.

Definition 8.8 If {fn} ∈ X∗ then fn converges weakly-∗ to f , fn
∗
⇀ f

if

fn(x)→ f(x) for all x ∈ X.

We have a result along similar lines to Lemma 8.2.

Lemma 8.9

(i) Weak-∗ limits are unique;

(ii) weakly-∗ convergent sequences are bounded;

(iii) weak convergence in X∗ implies weak-∗ convergence in X∗;

(iv) if X is reflexive then weak-∗ convergence in X∗ implies weak con-

vergence in X∗.

Proof (i) Follows from the definition.

(ii) Follows immediately from the PUB.
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(iii) fn ⇀ f in X∗ means that for every Φ ∈ X∗∗ we have

Φ(fn)→ Φ(f).

Given any element x ∈ X we can consider the corresponding x∗∗ ∈ X∗∗.
Since fn ⇀ f in X∗ we have

fn(x) = x∗∗(fn)→ x∗ ∗ f = f(x),

and so fn
∗
⇀ f .

(iv) When X is reflexive any Φ ∈ X∗∗ is of the form x∗∗ for some

x ∈ X. So if fn
∗
⇀ f in X∗ we have

Φ(fn) = x∗∗(fn) = fn(x)→ f(x) = x∗∗(f) = Φ(f),

using the weak-∗ convergence of fn to f to take the limit. So fn ⇀ f in

X∗.

8.3.1 Two weak compactness theorems

We now prove two key compactness theorems. We begin with a prepara-

tory lemma.

Lemma 8.10 Let (fn) be a bounded sequence in X∗ with ‖fn‖X∗ ≤M ,

and suppose that fn(xk) converges for every xk in a dense subset of X.

Then limn→∞fn(x) exists for every x ∈ X, and the map f : X → R
defined by setting

f(x) = lim
n→∞

f(x), for each x ∈ X

is an element of X∗ with ‖f‖X∗ ≤M .

Proof First notice that if fn(xk) converges for every k then fn(x) con-

verges for every x ∈ X. Indeed, if ‖fn‖X∗ ≤ M then given ε > 0 and

x ∈ X first choose k such that

‖x− xk‖X ≤ ε/3M.

Now, using the fact that fn(xk) converges as n → ∞, choose n0 suffi-

ciently large that ‖fn(xk) − fn(xk)‖ < ε/3 for all n,m ≥ n0. Then for
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all n,m ≥ n0 we have

|fn(x)− fm(x)|
≤ |fn(x)− fn(xk)|+ |fn(xk)− fm(xk)|+ |fm(xk)− fm(x)|

≤ ‖fn‖X∗‖x− xk‖+
ε

3
+ ‖fm‖X∗‖xk − x‖

≤ ε.

It follows that (fn(x)) is Cauchy and hence converges.

We now define f : X → R by setting

f(x) := lim
n→∞

fn(x).

Then f is linear since

f(x+ λy) = lim
n→∞

fn(x+ λy) = lim
n→∞

fn(x) + λfn(y) = f(x) + λf(y)

and f is bounded since

|f(x)| = lim
n→∞

|fn(x)| ≤M‖x‖.

Using this we can prove a weak-∗ compactness result when X is sep-

arability.

Theorem 8.11 Suppose that X is separable. Then a bounded sequence

in X∗ has a weakly-∗ convergent subsequence.

Proof Let {xk} be a countable dense subset of X, and {fj} a sequence

in X∗ such that ‖fj‖X∗ ≤ M . A standard diagonal argument yields a

subsequence of the {fj} (which we relabel) such that fj(xk) converges

for every k: Since |fn(x1)| ≤M‖x1‖, we can use the Bolzano–Weierstrass

Theorem to find a subsequence fn1,i
such that fn1,i

(x1) converges. Now,

since |fn1,i
(x2)| ≤ M‖x2‖ we can find a subsequence fn2,i

of fn1,i
such

that fn2,i(x1) converges and so does fn2,i(x2). We continue in this way

to find successive subsequences fnm,i
such that

fnm,i
(xk) converges as i→∞ for every k = 1, . . . ,m.

By taking the diagonal subsequence f∗m := fnm,m
we can ensure that

f∗m(xk) converges for every k ∈ N.

The proof concludes using Lemma 8.10.
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A consequence of this is the following extremely useful weak compact-

ness result. In fact the unit ball in X is weakly compact if and only if

X is reflexive.

Theorem 8.12 Let X be a reflexive Banach space. Then any bounded

sequence in X has a weakly convergent subsequence.

Proof Take a bounded sequence (xn) ∈ X and let Y = Sp{x1, x2, . . .}.
Then, using Lemma 1.8, Y is separable. Since Y ⊂ X and X is reflexive,

so is Y (see Examples 4). Therefore Y ∗∗ is separable, and so Y ∗ is

separable (using Lemma 3.6).

Now, x∗∗n is a bounded sequence in Y ∗∗, so there is a subsequence xnk

such that x∗∗nk
is weakly-∗ convergent in Y ∗∗ to some limit Φ ∈ Y ∗∗.

Since Y is reflexive, Φ = x∗∗ for some x ∈ Y ⊂ X.

Now for any f ∈ X∗ we have fY := f |Y ∈ Y ∗, so

lim
n→∞

f(xn) = lim
n→∞

fY (xn) = lim
n→∞

x∗∗n (fY ) = x∗∗(fY ) = fY (x) = f(x)

and xn ⇀ x.

Here is an example of the use of weak compactness and ‘approxima-

tion’ to prove the existence of a fixed point.

Lemma 8.13 Let X be a reflexive Banach space, Y a Banach space,

and T : X → Y a compact linear operator. Suppose that there is a

bounded sequence (xn) ∈ X such that

‖Txn − xn‖ → 0

as n→∞. Then there exists x ∈ X such that Tx = x.

Proof Since (xn) is a bounded sequence in a reflexive Banach space

it has a weakly convergent subsequence, xnj
→ x. Since T is compact,

it follows that Txnj → Tx strongly in Y . Since limj→∞ Txnj − xnj it

follows that xnj
→ Tx. Since strong convergence implies weak conver-

gence we have xnj ⇀ Tx, and since weak limits are unique it follows

that x = Tx.
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Open mapping, inverse mapping, and closed
graph theorems

9.1 Open mapping and inverse mapping theorems

We start by proving the Open Mapping Theorem; however, its corollary,

the Inverse Mapping Theorem, is perhaps more useful.

Theorem 9.1 (Open mapping theorem) If T : X → Y is a bounded

surjective linear map from a Banach space X into a Banach space Y ,

then T maps open sets in X to open sets in Y .

We use BX for the closed unit ball in X, and B(x, r) for the open ball

of radius r around x.

Proof It suffices to show that T (BX) includes an open ball around 0

in Y , say B(0, r) for some r > 0: if U is an open set in X then for

any point x ∈ U there exists an δ > 0 such that x + δBX ⊂ U . Then

T (U) ⊃ T (x+ δBX) = Tx+ δT (BX) ⊃ Tx+ δB(0, r).

First we show that T (BX) contains a ball around 0.

Notice that the closed sets

T (nBX) = nT (BX)

cover Y (since T (X) = Y as T is surjective). It follows use the BCT that

at least one of them contains a ball of positive radius (otherwise they

would all be nowhere dense, and then they could not cover Y ).

All these sets are scaled copies of T (BX), so T (BX) contains BY (z, r)
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for some z ∈ Y and some r > 0. However, T (BX) is convex and sym-

metric, and so contains BY (0, r).

Now we show that T (2BX) must include BY (0, r). Note that for any

y ∈ BY (0, αr), since T (αBX) 3 y, for any ε > 0 there exists x ∈ αBX
such that

‖y − Tx‖Y < ε.

We use this argument repeatedly. Given u ∈ BY (0, r), find x1 ∈ BX
with ‖u− Tx1‖Y < r/2. Then, since

u− Tx1 ∈ B(0, r/2)

we can find x2 ∈ 1
2BX such that

‖(u− Tx1)− Tx2‖ < r/4.

Now find x3 ∈ 1
4BX such that

‖(u− Tx1 − Tx2)− Tx3‖ < r/8,

and so on, yielding a sequence (xn) with xn ∈ 2−nBX such that∥∥∥∥∥∥u− T
 n∑
j=1

xj

∥∥∥∥∥∥ < r2−n.

The sequence
∑n
j=1 xj is Cauchy; since X is complete it converges to

some x ∈ 2BX with Tx = u.

Since T (2BX) ⊃ BY (0, r) it follows that T (BX) ⊃ BY (0, r/2).

Corollary 9.2 (Inverse Mapping Theorem) If T : X → Y is a bounded

bijective linear map from a Banach space X onto a Banach space Y , then

T−1 is bounded.

Proof T has an inverse since it is bijective. The inverse is linear: the

inverse is uniquely defined, and

T (αT−1(y1) + βT−1y2) = αy1 + βy2 = T (T−1(αy1 + βy2)),

i.e. T−1(αy1 + βy2) = αT−1y1 + βT−1y2.

By the open mapping theorem T (BX) includes θBY for some θ > 0,

so

T−1(θBY ) ⊂ BX ,
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and so ‖T−1‖ ≤ θ−1.

This has an immediate application in spectral theory. For T : Rn → Rn
we know that λ ∈ σ(T ) if and only if λ is an eigenvalue, i.e. T −λI is not

one-to-one. In infinite dimensions, the spectrum of T : X → X consists

of all those λ for which T − λI does not have a bounded inverse. The

inverse mapping theorem tells us that if T ∈ B(X) and T − λI is one-

to-one and onto then necessarily (T − λI)−1 is bounded, so λ /∈ σ(T ).

The following corollary, concerning equivalence of norms on Banach

spaces, follows by considering the identity map from id: (X, ‖ · ‖1) →
(X, ‖ · ‖2).

Corollary 9.3 If X is a Banach space that is complete wrt two differ-

ent norms ‖ · ‖1 and ‖ · ‖2 and ‖x‖2 ≤ C‖x‖1, then the two norms are

equivalent.

A quick example before a much longer one: you cannot put the `1

norm on `2 and make a complete space: we know that ‖x‖`2 ≤ ‖x‖`1 .

But (1, 1/2, 1/3, . . .) ∈ `2 and not in `1, so the norms are not equivalent.

9.2 Bases in Banach spaces

We now use Corollary 9.3 to investigate bases in Banach spaces. Suppose

that a Banach space X has a countable basis (en) so that any element

x ∈ X can be written uniquely in the form

x =

∞∑
j=1

xjej ,

where the sum converges in X. Suppose that we consider the ‘truncated’

expansions

Pnx =

n∑
j=1

xjej .

Can we find a constant C such that ‖Pnx‖ ≤ C‖x‖ for every n and every

x ∈ X?

If we knew that Pn was in B(X,X) for every n (i.e. that for each n
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we had ‖Pnx‖ ≤ Cn‖x‖ for every x ∈ X) this would follow from the

Principle of Uniform Boundedness. But this is not so easy to show.

In order to do this, we prove the following.

Proposition 9.4 Suppose that (en) is a countable sequence in a Ba-

nach space X with ‖en‖ = 1 whose closed linear span is all of X, and

which is a basis for X in the sense described above. Then

|||x||| = sup
n

∥∥∥∥∥∥
n∑
j=1

ajej

∥∥∥∥∥∥
X

when x =

∞∑
j=1

ajej

defines a norm |||·||| on X, and X is complete with respect to this norm.

Proof It is straightforward to show that |||·||| is a norm. The only issue

is the triangle inequality, but note that by the triangle inequality for ‖·‖

‖
n∑
i=1

(xi + yi)ei‖ ≤ ‖
n∑
i=1

xiei‖+ ‖
n∑
i=1

yiei‖,

so

sup
n
‖

n∑
i=1

(xi + yi)ei‖ ≤ sup
n
‖

n∑
i=1

xiei‖+ sup
n
‖

n∑
i=1

yiei‖,

i.e.

|||x+ y||| ≤ |||x|||+ |||y|||.

To show that (X, |||·|||) is complete is more involved. A key observation,

however, is that if x =
∑∞
j=1 ajej then

|aj | = ‖ajej‖ =

∥∥∥∥∥∥
m∑
j=1

ajej −
m−1∑
j=1

ajej

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
m∑
j=1

ajej

∥∥∥∥∥∥+

∥∥∥∥∥∥
m−1∑
j=1

ajej

∥∥∥∥∥∥ ≤ 2|||x|||.

Now suppose that x(n) is a Cauchy sequence in (X, |||·|||), with

x(n) =

∞∑
j=1

a
(n)
j ej :
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given any ε > 0 there exists an N = N(ε) such that

∣∣∣∣∣∣∣∣∣x(n) − x(m)
∣∣∣∣∣∣∣∣∣ = sup

k

∥∥∥∥∥∥
k∑
j=1

[a
(n)
j − a(m

j )]ej

∥∥∥∥∥∥ < ε

for all n,m ≥ N(ε).

It follows that for each j the sequence (a
(n)
j ) is Cauchy, so a

(n)
j → αj

as n → ∞. We now show that
∑
j αjej is convergent to some element

x ∈ X and that
∣∣∣∣∣∣x(n) − x

∣∣∣∣∣∣→ 0 as n→∞.

Take n ≥ N(ε) and any k ≥ 1. Then∥∥∥∥∥∥
k∑
j=1

(a
(n)
j − αj)ej

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k∑
j=1

(a
(n)
j − lim

m→∞
a

(m)
j )

∥∥∥∥∥∥
= lim
m→∞

∥∥∥∥∥∥
k∑
j=1

(x
(n)
j − x(m)

j )ej

∥∥∥∥∥∥ < ε. (9.1)

We use this to show that the partial sums
∑n
j=1 αjej are Cauchy in ‖ · ‖

and hence converge to some x =
∑
j αjej . Given this, note that (9.1)

shows that x(n) to x in the norm |||·|||.

For each n ≥ N(ε) we know that
∑
j a

(n)
j ej converges in X, so there

exists M(ε) such that if r > s ≥M(ε) we have∥∥∥∥∥
r∑
i=s

a
(n)
i ei

∥∥∥∥∥ < ε. (9.2)

Therefore∥∥∥∥∥
r∑
i=s

αiei

∥∥∥∥∥ =

∥∥∥∥∥
r∑
i=s

(a
(
in)− αi)ei

∥∥∥∥∥+

∥∥∥∥∥
r∑
i=s

a
(n)
i ei

∥∥∥∥∥
≤

∥∥∥∥∥
r∑
i=1

(a
(
in)− αi)ei −

s−1∑
i=1

(a
(
in)− αi)ei

∥∥∥∥∥+ ε

≤ 3ε,

using (9.1) and (9.2).
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Corollary 9.5 If (en) satisfies the conditions of Proposition 9.4, then

there exists a constant C > 0 such that∥∥∥∥∥∥
n∑
j=1

xjej

∥∥∥∥∥∥ ≤ C‖x‖
for every n ∈ N and x ∈ X, where x =

∑
j xjej.

9.3 The Closed Graph Theorem

Theorem 9.6 (Closed Graph Theorem) Suppose that T : X → Y is a

linear map between Banach spaces and that the graph of T ,

G := {(x, Tx) ∈ X × Y : x ∈ X}

is a closed subset of X × Y (with norm ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y ).

Then T is bounded.

If the graph G is closed then this means that if xn → x and Txn → y

then Tx = y. Continuity is stronger, since it does not require Txn → y.

Proof Note that G is closed linear subspace of X×Y (since T is linear).

It is therefore a Banach space when equipped with the norm of X × Y .

Now consider the projection map ΠX : G→ X, defined by

ΠX(x, y) = x,

which is both linear and bounded. This map is also surjective and one-

to-one, since

ΠX(x, Tx) = ΠX(y, Ty) ⇒ x = y ⇒ (x, Tx) = (y, Ty).

By the IMT the map Π−1
X is bounded (this step requires the fact that

G is closed ⇒ G is a Banach space). It follows that

‖Π−1
X x‖X×Y = ‖(x, Tx)‖X×Y = ‖x‖X + ‖Tx‖Y ≤M‖x‖,

and so ‖Tx‖Y ≤M‖x‖ as required.
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Continuous functions

10.1 “Baire one” functions

One nice application of the Baire Category Theorem is the following.

Theorem 10.1 Let fn : R → R be a sequence of continuous func-

tions that converge pointwise to some function f : R → R, i.e. f(x) =

limn→∞ fn(x) exists for every x. Then f is continuous at a residual set.

Before the proof we make the following observation: if U and V are

open subsets of R with V ∩ Ū 6= ∅ then U ∩ V 6= ∅. For any v ∈ V ∩ Ū
there exists ε > 0 such that B(v, ε) ⊂ V , and since v ∈ Ū there exist

un ∈ U such that un → v. So un ∈ V for all n sufficiently large.

Proof We show that for any δ > 0 the closed set

Fδ = {x0 ∈ R : lim
ε→0

sup
x: |x−x0|≤ε

|f(x)− f(x0)| ≥ 3δ}

is nowhere dense. From this it follows that

∪n∈NF1/n = {discontinuity points of f}

is the countable union of closed nowhere dense sets, and so its comple-

ment – the set of continuity points – is residual.

To show that Fδ is nowhere dense, i.e. that its closure contains no

open set, let

En(δ) = {x ∈ R : sup
i,j≥n

|fi(x)− fj(x)| ≤ δ}.

54
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Note that En is closed, En+1 ⊃ En, and

R =

∞⋃
n=0

En.

Choose any open set U ⊂ R, and consider

U =

∞⋃
n=0

U ∩ En.

Since U is a complete metric space, it follows from the Baire Category

Theorem that there exists an n such that U ∩ En contains an open set

V ′. From the remark before the proof, V := V ′ ∩U is an open subset of

U ∩ En that is in addition a subset of U .

Since V ⊂ En, it follows that |fi(x) − fj(x)| ≤ δ for all x ∈ V and

i, j ≥ n. Fixing i = n and letting j →∞ it follows that

|fn(x)− f(x)| ≤ δ for all x ∈ V.

Now, since fn is continuous, for any x0 ∈ V there is a neighbourhood

N(x0) ⊂ V such that

|fn(x)− fn(x0)| < δ for all x ∈ N(x0).

Thus by the triangle inequality

|f(x0)− f(x)| < 3δ for all x ∈ N(x0).

It follows that no element of N(x0) belongs to Fδ.

This implies, since N(x0) ⊂ V ⊂ U that U contains an open set that

contains no element of Fδ. This shows that Fδ is nowhere dense, which

concludes the proof.

10.2 The Arzelà–Ascoli Theorem

Theorem 10.2 Let X be a compact metric space. A subset of C(X;R)

is compact if and only if it is closed, bounded, and equicontinuous.
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A subset A of C(X;R) is equicontinuous if for every ε > 0 there exists

a δ > 0 such that

d(x, y) < ε ⇒ |f(x)− f(y)| < ε for every f ∈ A.

Proof We begin by constructing a countable dense subset of X of a

particular form. For each n, we have

X ⊂
⋃
x∈X

B(x, 2−n).

SinceX is compact, there is a finite subcover, so there are a finite number

of points (x
(n)
j )Nn

j=1, such that for every x ∈ X we have d(x, x
(n)
j ) for

some j. Put these together to form a sequence (xk) such that given n,

we can guarantee that there is an N(n) such that for every x ∈ X,

d(x, xk) < 2−n for some k ≤ N(n).

Now, since (fj) is bounded we can use a ‘standard diagonal argument’

to find a subsequence (which we relabel) such that fj(xk) converges for

every k. We now show that (fj) must be Cauchy in the sup norm.

Given ε > 0, since (fj) is equicontinuous there exists a δ > 0 such

that

|x− y| < δ ⇒ |fj(x)− fj(y)| < ε/3

for every j.

By our construction of the (xj) there exists an M such that for every

x ∈ X there exists an xj with 1 ≤ j ≤M such that |x− xj | < δ.

Now for N sufficiently large we can guarantee that

|fn(xi)− fm(xi)| < ε/3 n,m ≥ N, 1 ≤ i ≤M.

Now we can use the triangle inequality: for n,m ≥ N , for any x ∈ X we

choose 1 ≤ i ≤M such that d(x, xi) < δ, and then

|fn(x)− fm(x)| = |fn(x)− fn(xj) + fn(xj)− fm(xj) + fm(xj)− fm(x)|
≤ |fn(x)− fn(xj)|+ |fn(xj)− fm(xj)|+ |fm(xj)− fm(x)|
< ε,

which shows that (fn) is Cauchy in the sup norm, and hence converges

to some f ∈ C0(X;R) as required.
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Now note that if A is compact then it is bounded. To show that A

must consist of equicontinuous functions, suppose that it does not. Then

there exists ε > 0 such that for each n ∈ N there are points xn, yn ∈ X
and fn ∈ A such that

d(xn, yn) < 1/n but |fn(x)− fn(y)| ≥ ε.

But any uniformly convergent sequence is equicontinuous (exercise).

10.3 The Stone–Weierstrass Theorem

Let X be a compact metric space. Given f, g ∈ C(X) we can define

fg ∈ C(X) by (fg)(x) = f(x)g(x).

A linear subspace A of C(X) is an algebra if 1 ∈ A and f, g ∈ A implies

that fg ∈ A.

Lemma 10.3 Suppose that X is compact and that A is a closed sub-

algebra of C(X). Then if f ∈ A with f ≥ 0,
√
f ∈ A.

Proof Suppose that 0 ≤ f ≤ 1. Set g = 1 − f ; so 0 ≤ g ≤ 1 and

f = 1− g.

Now, the Taylor expansion of
√

1− x gives

√
1− x = 1−

∞∑
n=1

anx
n,

which converges uniformly for 0 ≤ x ≤ 1. So

√
f(x) = 1−

∞∑
n=1

an(g(x)n) ∈ A.

For a general f ≥ 0 consider λf with λ ≥ 0 such that 0 ≤ λf ≤ 1.

Theorem 10.4 (Real Stone–Weierstrass Theorem) Suppose that X is

compact and A is a closed subalgebra of C(X;R) that ‘separates points’,

i.e. for every x, y ∈ X there exists an f ∈ A such that f(x) 6= f(y).

Then A = C(X;R).
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Proof If f ∈ A then |f | ∈ A, since |f | =
√
f2.

If f, g ∈ A then

min(f, g) =
1

2
(f + g − |f − g|) ∈ A

and

max(f, g) =
1

2
(f + g + |f − g|) ∈ A.

Now, given x, y ∈ X, there exists h ∈ A such that h(x) 6= h(y).

For any choice of λ, µ ∈ R the map g defined by

t 7→ µ+ (λ− µ)
h(t)− h(y)

h(x)− h(y)

is an element of A, with g(x) = λ and g(y) = µ.

Now, fix f ∈ C(X). Take ε > 0, x, y ∈ X; then there exists fxy ∈ A
such that

fxy(x) = f(x) fxy(y) = f(y).

For x ∈ X the set

Uy = {ξ ∈ X : fxy(ξ) < f(ξ) + ε}

is an open neighbourhood of y (since every h ∈ A is continuous).

Since X is compact, there exist y1, . . . , yn such that

X =

n⋃
j=1

Uyj .

Define

hx = min(fx,yj ).

We know that hx ∈ A, that hx(x) = f(x), and hx < f + ε.

Now consider similarly

Vx = {ξ ∈ X : hx(ξ) > f(ξ)− ε}.
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Then there exist a finite collection (xj) such that

X =

m⋃
j=1

Vxj
.

Define F = maxj hxj
. Then

f − ε < F < f + ε,

i.e. d(f, F ) < ε. It follows that f ∈ A = A.

Consequences of this result were discussed in FA1 (Section 3.2): poly-

nomials are dense in C(X;R); periodic functions can be approximated

by Fourier series.

Theorem 10.5 (Complex Stone–Weierstrass Theorem) Suppose that

X is compact and A is a closed subalgebra of C(X;C) that is closed under

conjugation (f ∈ A implies that f̄ ∈ A) and that ‘separates points’, i.e.

for every x, y ∈ X there exists an f ∈ A such that f(x) 6= f(y). Then

A = C(X;C).

Proof We want to show that AR, the elements of A that are real-valued,

satisfy the requirements of the real Stone–Weierstrass Theorem. The

algebra property is inherited from A itself; we need to show that AR still

separates points. So suppose that x, y ∈ X and f ∈ A separates points.

Then either Ref(x) 6= Ref(y) or Imf(x) 6= Imf(y). Since f is closed

under conjugation we have

Re(f) =
1

2
(f + f̄) ∈ A and Im(f) =

1

2i
(f − f̄) ∈ A;

these are both elements of C(X;R), and hence of AR. So AR separates

points.

Now since any element f ∈ C(X;C) can be written as f1 + if2, for

appropriate f1, f2 ∈ C(X;R), it follows that we can approximate any

element of C(X;C) by elements of the form φ+iψ with φ, ψ ∈ AR; and

thus by φ+ iψ ∈ A.
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10.4 Mollification

Finally, we show how to approximate continuous functions by infinitely

differentiable functions. First, note that the function

ψ(x) =

{
e−1/(1−|x|2) |x| ≤ 1

0 |x| > 1.

is C∞.

The support of f is given by

supp(f) := closure of {x : f(x) 6= 0}.

In the statement we write ∂j = ∂/∂xj .

Lemma 10.6 Let ρ ∈ C∞(Rn) such that

ρ ≥ 0, supp(ρ) ⊂ {|x| ≤ 1}, and

ˆ
ρ = 1.

Take f ∈ C0(Rn) with compact support; write ρε = ε−nρ(x/ε). Then

fε(x) = (ρε ∗ f)(x) = ε−n
ˆ
f(y)ρ

(
x− y
ε

)
dy

is an element of C∞(Rn) with the support of fε contained in an ε-

neigbourhood of the support of f . Furthermore, if in addition f ∈ C1(Rn)

then ∂jfε converges uniformly to ∂jf for each j = 1, . . . , n.

If f ∈ Ck(Rn) the argument of the proof shows that all derivatives up

to order k converge uniformly; it also shows that

∂jfε = (∂jf)ε, (10.1)

i.e. mollification and derivatives commute.

Proof That fε ∈ C∞ follows by differentiating under the integral sign

to give

∂αfε(x) = ε−n
ˆ
f(y)∂αx

[
ρ

(
x− y
ε

)]
dy.

That its support is contained in an ε-neighbourhood of the support

of f follows since fε = 0 if the distance of x from the support of f is

greater than ε.
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To prove convergence of fε to f , note that we can change variables to

write

fε(x) =

ˆ
f(x− εz)ρ(z) dz, (10.2)

and then

|fε(x)− f(x)| =
∣∣∣∣ˆ [f(x− εz)− f(x)]ρ(z) dz

∣∣∣∣
≤
ˆ
|f(x− εz)− f(x)|ρ(z) dz

≤ sup
|y|≤ε

|f(x− y)− f(x)|.

Since f is uniformly continuous, this expression tends to zero uniformly

as ε→ 0.

For the convergence of derivatives, it follows from (10.2) that

∂jfε(x) =

ˆ
(∂jf)(x− εz)ρ(z) dz

and we can use the same argument as above. Note that this equality also

gives (10.1).
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An introduction to the theory of
distributions

11.1 Test functions and distributions

11.1.1 Multi-index notation

A multi-index α is a collection of non-negative integers

α = (α1, . . . , αn);

we write |α| =
∑n
j=1 αj .

For any vector v = (v1, . . . , vn) we write

vα = vα1
1 · · · vαn

n ,

and in particular

∂α =
∂|α|

∂α1
1 · · · ∂α

n

n

.

By α! we mean

α! = α1! · · ·αn!,

and we write (
α

β

)
=

α!

(α− β)!β!
=

(
α1

β1

)
· · ·
(
αn
βn

)
,

so that the Leibniz Rule for differentiation of products can be written

∂α(fg) =
∑

0≤β≤α

(
α

β

)
∂βf∂α−βg,
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where we write β ≤ α if βi ≤ αi for all i = 1, . . . , n.

The following version of Taylor’s Theorem will be useful later.

Theorem 11.1 (Multi-dimensional Taylor’s Theorem) Suppose that

f ∈ C∞(Rn). Then for each x ∈ Rn and m ≥ 0 there exists c ∈ (0, 1)

such that

f(x) =
∑
|α|≤m

∂αf(0)

α!
xα +

∑
|α|=m+1

∂α(cx)

α!
xα. (11.1)

Proof If g ∈ C∞(R) then Taylor’s Theorem guarantees that there exists

c ∈ (0, 1) such that

g(1) =
∑

0≤k≤m

g(k)(0)

k!
+
g(k+1)(0)

(k + 1)!
ck+1. (11.2)

Apply this to the function g(t) := f(xt). Then one can show by in-

duction that

1

k!
∂kt f(xt) =

1

k!

 n∑
j=1

xi∂i

k

f |y=xt =
∑
|α|=k

xα

α!
f (α)(xt),

from which (11.1) follows. Indeed, if this holds for k, then

1

(k + 1)!
∂k+1
t f(xt) =

1

k + 1
∂t

∑
|α|=k

xα

α!
f (α)(xt)


=

1

k + 1

∑
|α|=k

n∑
j=1

xix
α

α!
f (α+ei)(xt),

where ei is the multiindex that is zero apart from a single 1 in the ith

place. Now simply note that |α + ei| = k + 1, and that every β with

|β| = k + 1 can be obtained in k + 1 different ways as α + ei (|α| = k),

whence

1

(k + 1)!
∂k+1
t f(xt) =

∑
|α|=k+1

xα

α!
f (α)(xt).

Using this form of the derivative in (11.2) yields (11.1).
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11.1.2 Test functions and distributions

We will take Ω to be an open subset of Rn.

With any continuous function f ∈ C0(Ω) we can associate a linear

map uf given by

φ 7→ 〈uf , φ〉 :=

ˆ
Ω

f(x)φ(x) dx, (11.3)

for φ in some “appropriate” space of functions, and this linear map will

have certain continuity properties. A generalised function, or distribu-

tion, will be a linear map with the same continuity properties.

Since we want the integral in (11.3) to make sense for as many possible

f as possible, we choose φ to have compact support. Since we will later

define generalised derivatives using an integration by parts, we ensure

that φ is infinitely differentiable.

Definition 11.2 The space D(Ω) of test functions on Ω are infinitely

differentiable functions f on Ω with compact support, i.e. there is a com-

pact set K with f ≡ 0 on Ω \K. We say supp(f) ⊂ K.

Other notations for D(Ω) are C∞c (Ω) and C∞0 (Ω).

As distributions are to be defined by continuity properties, we need

a notion of convergence in D(Ω). In the same way that we were free to

choose as “nice” as possible a space of functions, we choose a very strong

notion of convergence.

Definition 11.3 A sequence {φn} in D(Ω) is said to converge to φ in

D(Ω) (φn
D−→ φ) if there is a compact set K with supp(φn) ⊂ K for all

n, and φn and all its derivatives converge uniformly to φ on Ω.

If f is continuous then if φn
D−→ φ it is easy to see that

〈uf , φn〉 =

ˆ
Ω

fφn →
ˆ

Ω

fφ = 〈uf , φ〉,

since ∣∣∣∣ˆ
Ω

f(φn − φ)

∣∣∣∣ ≤ ˆ
K

|f ||φn − φ| ≤ ‖f‖K‖φn − φ‖K , (11.4)
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where ‖f‖K is the supremum of |f(x)| over K. The right hand side of

(11.4) tends to zero with n.

We now define the space D ′(Ω) of distributions on Ω, as the space of

all sequentially continuous linear functionals on D(Ω). (This is not quite

the dual space of D(Ω), since D(Ω) is not a normed space.)

Definition 11.4 A distribution f is a sequentially continuous linear

functional φ 7→ 〈f, φ〉 from D(Ω) into R; i.e. if φn → φ in D(Ω) then

〈f, φn〉 → 〈f, φ〉.

The uf defined above for any f ∈ C0(Ω) is therefore a distribution.

It is convenient to write just 〈f, φ〉 for 〈uf , φ〉, although this is a slight

abuse of notation. If f, g ∈ C0 and uf = ug then f = g, see Examples 7.

Similarly, given any f ∈ L1
loc(Ω) (L1(K) for every compact subset K

of Ω) we can define uf by the same formula as (11.3). In this case if

uf = ug then f = g almost everywhere. (This result is known as the

‘fundamental lemma of the calculus of variations’.)

An important example is the Dirac delta distribution: for each y ∈ Ω

the distribution δ ∈ D ′(Ω) is defined by

〈δ, φ〉 = φ(y).

Lemma 11.5 (Seminorm estimates) A linear map u : D(Ω) → R is

an element of D ′(Ω) if and only if for every compact set K ⊂ Ω there

exist constants C, k such that

|〈u, φ〉| ≤ C
∑
|α|≤k

sup |∂αφ(x)| (11.5)

for every φ ∈ D(Ω) with supp(φ) ⊂ K.

A distribution is said to have finite order if you can take the same k

in (11.5) for every K ⊂ Ω; the order of a distribution is the minimum

such k.

Proof If u is a distribution then suppose that there is a compact K for

which this inequality fails. Then for each k ≥ 1 there exists φk ∈ D(Ω)
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with supp(φk) ⊂ K and

|〈u, φk〉| ≥ k
∑
|α|≤k

sup |∂αφk|.

Now consider

ψk =
φk

k
∑
|α|≤k sup |∂αφk|

;

then ψk → 0 in D but |〈u, ψk〉| ≥ 1, which is impossible.

Now suppose that the inequality holds, and φn ∈ φ in D . Let K be a

compact set that contains the support of φn and φ. Then there exist C,

k, such that

|〈u, φn〉 − 〈u, φ〉| = |〈u, φn − φ〉| ≤ C
∑
|α|≤k

sup |∂α(φn − φ)|

so the right-hand side tends to zero as n → ∞, which implies that

u ∈ D ′.

Examples: δ is a distribution of order zero; 〈u, φ〉 = ∂αφ(0) a distri-

bution of order |α|;

〈u, φ〉 =

∞∑
k=0

φ(k)(k)

(for φ ∈ D(R)) a distribution of infinite order.

Just as we had a notion of convergence in D(Ω), there is a correspond-

ing notion of convergence of distributions (cf. weak-∗ convergence).

Definition 11.6 A sequence (un) in D ′(Ω) converges to u ∈ D ′(Ω)

(un
D′−→ u) if 〈un, φ〉 → 〈u, φ〉 for all φ ∈ D(Ω).

Example: take un to be the distribution corresponding to ρ1/n from

Lemma 10.6. Then un
D′−→ δ (we will revisit this example).

A version of the Principle of Uniform Boundedness implies that if

(uj) ∈ D ′(Ω) and 〈uj , φ〉 converges for every φ ∈ D(Ω) then the linear

map φ 7→ 〈u, φ〉 defined by setting

〈u, φ〉 := lim
j→∞
〈uj , φ〉 for each φ ∈ D(Ω)

is an element u ∈ D ′(Ω).
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11.2 Differentiation, multiplication, and other
operations

11.2.1 The distribution derivative

We now introduce the generalised derivative, by analogy with integrating

by parts ˆ
Ω

∂f

∂xj
g dx = −

ˆ
Ω

f
∂g

∂xj
dx

when f and g are both differentiable.

Definition 11.7 The distribution derivative of f ∈ D ′(Ω) with with

respect to xj, written ∂jf is given by the linear map

〈∂jf, φ〉 := −〈f, ∂jφ〉. (11.6)

It follows directly from the differentiability and continuity properties

of the test functions that ∂jf is also a distribution.

Proposition 11.8 As defined above, ∂jf ∈ D ′(Ω). Furthermore,

(i) if f ∈ C1(Ω) then the definition agrees with the classical one, in that

∂juf = u∂jf ;

and

(ii) if uk
D′−→ u then ∂juk

D′−→ ∂ju.

Proof Suppose that φn
D−→ φ. Then ∂jφn

D−→ ∂jφ, and so

〈∂ju, φn〉 = −〈u, ∂jφn〉 → −〈u, ∂jφ〉 = (∂ju, φ〉,

the convergence in the previously line holding since u ∈ D ′; so ∂ju is a

distribution.

For (i) we have

〈∂juf , φ〉 = −〈uf , ∂jφ〉 = −
ˆ

Ω

f(x)∂jφ(x) dx

=

ˆ
Ω

∂jf(x)φ(x) dx = 〈u∂jf , φ〉.



68 An introduction to the theory of distributions

For (ii),

〈∂juk, φ〉 = −〈uk, ∂jφ〉;

since ∂jφ ∈ D , the definition of convergence in D ′ gives the limit as

−〈u, ∂jφ〉 = 〈∂ju, φ〉.

A distribution therefore has derivatives of all orders: iterating (11.6)

yields

〈∂αf, φ〉 := (−1)|α|〈f, ∂αφ〉.

Example 11.9 The Heaviside step function

H(x) =

{
0 x < 0

1 x ≥ 1

corresponds to the Heaviside distribution H ∈ D ′(R) defined by setting

〈H,φ〉 =

ˆ ∞
0

φ(x) dx for every φ ∈ D(R).

Then

〈∂H, φ〉 = −〈H, ∂φ〉

= −
ˆ ∞

0

φ′(x) dx

= φ(0) = 〈δ0, φ〉,

so ∂H = δ0.

Example 11.10 The derivatives of the δ distribution, δ(α), are given

by

〈δ(α), φ〉 := 〈∂αδ, φ〉 = (−1)|α|〈δ, ∂αφ〉 = (−1)|α|∂αφ(0).

Example 11.11 For a longer example, let us consider the distribution

in D ′(R) derived from the function log |x| ∈ L1
loc(R):

〈log |x|, φ〉 =

ˆ ∞
−∞

log |x|φ(x) dx.

This is a distribution because log |x| is integrable on any compact subset

of R.
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Now we calculate its derivative. We have

〈∂ log |x|, φ〉 = −〈log |x|, φ′〉

= −
ˆ ∞
−∞

log |x|φ′(x) dx

= − lim
ε→0

(ˆ −ε
−∞

+

ˆ ∞
ε

)
log |x|φ′(x) dx,

since log |x|φ′(x) is integrable. Now we integrate by parts to obtain

lim
ε→0

[(ˆ −ε
−∞

+

ˆ ∞
ε

)
φ(x)

x
dx

]
+ lim
ε→0

log(ε)(φ(ε)− φ(−ε))

= lim
ε→0

[ˆ −ε
−∞

φ(x)

x
dx+

ˆ ∞
ε

φ(x)

x
dx

]
=: PV

ˆ ∞
−∞

φ(x)

x
dx,

where the final term on the first line tends to zero as ε → 0 using the

Mean Value Theorem (φ(ε)− φ(−ε) = 2εφ′(c) for some c ∈ (−ε, ε)). So

∂ log |x| = PV 1
x in the sense of distributions.

11.2.2 Products of smooth functions and distributions

If u ∈ C(Ω) and f ∈ C∞(Ω) thenˆ
(fu)φ =

ˆ
u(fφ).

We define multiplication of distributions by smooth functions analagously.

Lemma 11.12 Suppose that u ∈ D ′(Ω) and ψ ∈ C∞(Ω); if we define

〈ψu, φ〉 := 〈u, ψφ〉 for every φ ∈ D(Ω)

then ψu ∈ D ′(Ω).

Note that ψφ ∈ D(Ω), so this definition makes sense. This does define

a distribution, since if φk
D−→ φ we have ψφk

D−→ ψφ thanks to the

Leibniz rule, and hence 〈ψu, φk〉 → 〈ψu, φ〉 as required for ψu to be a

distribution.

We now extend the Leibniz rule to such products.
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Proposition 11.13 Take u ∈ D ′(Ω) and ψ ∈ C∞(Ω). Then

∂α(uψ) =
∑
β≤α

(
α

β

)
∂βψ∂α−βu.

Proof This equality is required to hold in the sense of distributions,

which means that〈
u, (−1)|α|ψ∂αφ−

∑
β≤α

(
α

β

)
∂α−β [φ∂βψ]︸ ︷︷ ︸

Φ

〉
= 0.

Note that Φ ∈ D(Ω). We know that the Leibniz rule holds if u, ψ ∈ C∞;

so if we consider u = Φ (the distribution arising from Φ) the same

integrations by parts yield
´
|Φ|2 = 0. Since Φ is continuous, it follows

that Φ ≡ 0. Then 〈u,Φ〉 = 0 for every u ∈ D ′(Ω) as required.

Example 11.14 For any φ ∈ D(Ω), ψ ∈ C∞(Ω),

〈ψδ, φ〉 = 〈δ, ψφ〉 = ψ(0)φ(0) = 〈ψ(0)δ, φ〉

so ψδ = ψ(0)δ.

Example 11.15 For any f ∈ C∞(Ω)

fδ′ = ∂(fδ)− f ′δ
= ∂(f(0)δ)− f ′(0)δ

= f(0)δ′ − f ′(0)δ.

11.2.3 Other operations on distributions in D ′(Rn)

We can define the following by analogy with change of variables in inte-

grals when f ∈ C(Rn) and φ ∈ D(Rn).

Reflection. Let f̌(x) := f(−x); thenˆ
Rn

f̌(x)φ(x) dx =

ˆ
Rn

f(−x)φ(x) dx =

ˆ
Rn

f(y)φ(−y) dy

=

ˆ
Rn

f(y)φ̌(y) dy.

For u ∈ D ′(Rn) we define ǔ by setting

〈ǔ, φ〉 := 〈u, φ̌〉 for every φ ∈ D(Rn).
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Translation. Write τhf(x) := f(x− h). Then

ˆ
Rn

τhf(x)φ(x) dx =

ˆ
Rn

f(x− h)φ(x) dx =

ˆ
Rn

f(y)φ(y + h) dy

=

ˆ
Rn

f(y)τ−hφ(y) dy.

For u ∈ D ′(Rn) we define τhu by setting

〈τhu, φ〉 := 〈u, τ−hφ〉 for every φ ∈ D(Rn).

Dilation. Write ft(x) = f(tx). Then

ˆ
Rn

ft(x)φ(x) dx =

ˆ
Rn

f(tx)φ(x) dx = t−n
ˆ
Rn

f(y)φ(y/t) dy

= t−n
ˆ
Rn

f(y)φ1/t(y) dy.

For u ∈ D ′(Rn) we define ut by setting

〈ut, φ〉 = 〈u, t−nφ1/t〉 for every φ ∈ D(Rn)..

Definition 11.16 We say that u ∈ D ′(Rn) is homogeneous of degree

λ if

ut = tλu for all t > 0.

E.g. δ is homogeneous of degree −n:

〈δt, φ〉 = 〈δ, t−nφ1/t〉 = t−nφ(0) = 〈t−nδ, φ〉.

Note that if u is homogeneous of degree λ then ∂ju is homogeneous

of degree λ− 1:

〈(∂ju)t, φ〉 = 〈∂ju, t−nφ1/t〉 = −〈u, t−n∂jφ1/t〉 = −t−1〈u, t−n(∂jφ)1/t〉
= −t−1〈ut, ∂jφ〉 = −tλ−1〈ut, ∂jφ〉 = tλ−1〈∂jut, φ〉.

It follows that ∂αu is then homogeneous of degree λ − |α|; so δ(α) is

homogeneous of degree −n− |α|.
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11.3 The support of a distribution

Definition 11.17 Take u, v ∈ D ′(Ω), and let U be an open subset of

Ω. We say that u = v on U if

〈u, φ〉 = 〈v, φ〉 for all φ ∈ D(U).

Proposition 11.18 Let u, v ∈ D ′(Ω) and let {Yi}i∈I be a collection

of open subsets of Ω. If u = v on Yi for every i then u = v on ∪iYi.

Proof Take φ ∈ D(∪iYi). Then supp(φ) is a compact subset of ∪iYi, so

there exist i1, . . . , ik such that supp(φ) ⊂ ∪kj=1Yij .

Choose functions ψj ∈ D(Ω) such that supp(ψj) ⊂ Yij and
∑
ψj ≡ 1

on supp(φ). [This is a partition of unity – for a construction see Fried-

lander & Joshi.] Then we have

〈u, φ〉 = 〈u,
k∑
j=1

ψjφ〉 =

k∑
j=1

〈u, ψjφ〉

=

k∑
j=1

〈v, ψhφ〉 = 〈v,
k∑
j=1

ψjφ〉 = 〈v, φ〉,

where we use the fact that u = v on Yij to move from the first to the

second line.

Definition 11.19 The support of u ∈ D ′(Ω), supp(u), is the set de-

fined by

x ∈ Ω \ supp(u) ⇔ u = 0 on some open neighbourhood of x.

Example: supp(δ(α)) = {0} for every α. We will see that these are the

only distributions with point support.

Corollary 11.20 If u ∈ D ′(Ω) then u = 0 on Ω \ supp(u).

Proof Take x ∈ Ω \ supp(u). Then by definition u = 0 on an open

neighbourhood Ux of x, and ∪x∈Ω\supp(u)Ux covers Ω \ supp(u).

This means that if supp(φ)∩ supp(u) = ∅ then 〈u, φ〉 = 0. So if φ = 0

on an open neighbourhood of supp(u) then 〈u, φ〉 = 0 .
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Note that in general the fact that φ = 0 on supp(u) alone is not

sufficient to imply that 〈u, φ〉 = 0. Consider u = δ′ on R and φ(x) = x:

then φ = 0 on supp(δ′), but 〈δ′, φ〉 = −φ′(0) = −1.

Theorem 11.21 (Distributions with compact support) Suppose that

u ∈ D ′(Ω) has compact support. Then u is a distribution of finite order,

i.e. for any compact K ⊂ Ω such that supp(u) ⊂ int(K), there exist

constants C, k, such that

|〈u, φ〉| ≤ C
∑
|α|≤k

sup
x∈K
|∂αφ(x)| for all φ ∈ D(Ω).

Proof Fix ψ ∈ C∞ such that supp(ψ) ⊂ K and ψ ≡ 1 on a neigh-

bourhood of supp(u). By Lemma 11.5 there exist constants C, k, such

that

|〈u, φ〉| ≤ C
∑
|α|≤k

sup
x∈K
|∂αφ(x)|

for all φ ∈ D(Ω) such that supp(φ) ⊂ K.

For a general φ ∈ D(Ω) we can write

|〈u, φ〉| = |〈u, ψφ〉|

≤ C
∑
|α|≤k

sup
x∈K
|∂α(ψφ)(x)|

≤ C ′
∑
|α|≤k

sup
x∈K
|∂αφ(x)|,

using the Leibniz rule.

We write E ′(Ω) for the subset of D ′(Ω) consisting of all distributions

with compact support in Ω. Note that if u ∈ E ′(Ω) then we can define

the action of u on any test function φ ∈ C∞(Ω); taking ρ ∈ D(Ω) such

that ρ ≡ 1 on a neighbourhood of the support of u we can define

〈u, φ〉 := 〈u, ρφ〉. (11.7)

This observation will be useful later.

The following result is extremely important in applications to funda-

mental solutions of PDEs.
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Theorem 11.22 (Distributions with point support) If u ∈ D ′(Rn)

with supp(u) = {0} then

u =
∑
|α|≤k

cαδ
(α)

for some k ≥ 0, cα ∈ R.

Proof Using Lemma 11.5 there exist constants C, k such that

|〈u, φ〉| ≤ C
∑
|α|≤k

sup
|x|≤1

|∂αφ(x)|.

for all φ ∈ D(Ω) with supp(φ) ⊂ {|x| ≤ 1}.

First we show that if φ ∈ D(Rn) and ∂αφ(0) = 0 for all |α| ≤ k then

〈u, φ〉 = 0.

Fix ψ ∈ C∞(Rn) with ψ ≡ 1 on {|x| < 1/2} and supp(ψ) ⊂ {|x| < 1}.
Then for ε > 0

|〈u, φ〉| = |〈u, ψ(x/ε)φ(x)〉|

≤ C
∑
|α|≤k|

sup
|x|≤ε

|∂α{ψ(x/ε)φ(x)}|

≤ C ′
∑

β,γ: |β|+|γ|≤k

ε−|β| sup
|x|≤ε

|∂γφ|.

By Taylor’s Theorem

sup
|x|≤ε

|∂γφ| = O(εk+1−|γ|),

so 〈u, φ〉 = O(ε) as ε→ 0, i.e. 〈u, φ〉 = 0.

Take the same ψ as in part (i). Given φ ∈ D(Rn), set

φ̃(x) = φ(x)− ψ(x)
∑
|α|≤k

∂αφ(0)xα

α!
.

Then φ̃ ∈ D(Rn) with ∂αφ̃(0) = 0 for all |α| ≤ k. By (i) it follows that

〈u, φ̃〉 = 0 and so

〈u, φ〉 =
∑
|α|≤k

〈u, ψ(x)xα/α!〉∂αφ(0).
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So u =
∑
|α|≤k cαδ

(α) where

cα =
1

α!
〈u, ψ(x)xα〉.

An important application is to the fundamental solutions of PDEs.

We first treat the Laplace operator (∆ =
∑
j ∂

2
j ).

Theorem 11.23 We have

∆|x|2−n = (2− n)ωn−1δ,

where ωn = 2πn/2/Γ(n/2) is the area of the unit n-sphere.

Note that G(x) = |x|2−n defines a distribution, since
´
Gφ converges

for all φ with compact support.

Proof For a radial function f(x) = f(r), where r = |x|, we have

∆f =
d2f

dr2
+
n− 1

r

df

dr
.

So ∆|x|2−n = 0 on Rn \ {0}. It follows that ∆G is a distribution whose

support is {0}.

By the previous theorem it follows that

∆G =
∑
|α|≤k

cαδ
(α)

for some k ≥ 0, cα ∈ R.

Note that |x|2−n is homogeneous of degree 2−n, and so ∆G is homo-

geneous of degree −n.

We showed earlier that δ(α) is homogeneous of degree −n− |α| in Rn.

So we must have

t−n
∑
|α|≤k

cαδ
(α) =

∑
|α|≤k

cαt
−n−|α|δ(α).

Applying both sides to some φ ∈ D(Rn) such that φ = xα near zero we

obtain

t−ncαα! = t−n−|α|cαα! for all t > 0,

from which it follows that cα = 0 unless α = 0.
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Therefore

∆G = c0δ,

and it only remains to find the constant c0. To do this, apply both sides

to a radial φ ∈ D(Rn) that is one in a neighbourhood of zero to obtain

c0 = 〈∆G,φ〉 = 〈G,∆φ〉 = 〈|x|2−n,∆φ〉

= ωn−1

ˆ ∞
0

r2−n
[

d2φ

dr2
+
n− 1

r

dφ

dr

]
rn−1 dr

= ωn−1

ˆ ∞
0

r
d2φ

dr2
+ (n− 1)

dφ

dr
dr

= ωn−1

ˆ ∞
0

(n− 2)φ′ dr = −(n− 2)ωn−1

after an integration by parts.

For the fundamental solution of the heat equation ∂tu −∆u = δ see

Examples 7.

11.4 Convolution and mollification of distributions

While we cannot take the product of two distributions, we will see that

we can take their convolution. First we return to our mollification result

from the previous chapter and rewrite it.

Recall that for u, v ∈ D(Rn) we define the convolution of u and v,

u ∗ v, as

(u ∗ v)(x) =

ˆ
Rn

u(y)v(x− y) dy.

Lemma 11.24 Take ρ ∈ D(Rn) with ρ ≥ 0 and
´
Rn ρ = 1. Let ψk(x) =

knρ(kx). Then for every φ ∈ D(Rn) we have

ψk ∗ φ
D−→ φ

as k →∞.

Proof The support of ψk ∗ φ is contained within a 1-neighbourhood of

the support of φ, and ∂α(ψk ∗ φ) converges uniformly to ∂αφ for every

α ≥ 0. This is precisely convergence in D(Rn).
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Using the fact that

(τxǔ)(y) = ǔ(y − x) = u(x− y)

we can rewrite the definition of u ∗ v above as

(u ∗ v)(x) =

ˆ
u(y)(τxv̌)(y) dy,

or more concisely

(u ∗ v)(x) = 〈u, τxv̌〉.

For u ∈ D ′(Rn), φ ∈ D(Rn) we can therefore define

(u ∗ φ)(x) = 〈u, τxφ̌〉. (11.8)

Note that this defines a function of x, not (at least immediately) another

distribution.

A simple but useful example:

(δ ∗ φ)(x) = 〈δ, τxφ̌〉 = τxφ̌(0) = φ̌(−x) = φ(x);

so δ ∗ φ = φ. Similarly

(δ(α) ∗ φ)(x) = 〈δ(α), τxφ̌〉 = (−1)|α|[∂ατxφ̌](0) = ∂αφ(x);

so

δ(α) ∗ φ = ∂αφ α ≥ 0, φ ∈ D(Rn). (11.9)

We first prove some useful identities.

Lemma 11.25 For u ∈ D ′(Rn) and φ ∈ D(Rn) we have

τx(u ∗ φ) = τxu ∗ φ = u ∗ τxφ. (11.10)

Proof These follows from the definitions:

(τx(u ∗ φ))(y) = (u ∗ φ)(y − x) = 〈u, τy−xφ̌〉,

((τxu) ∗ φ)(y) = 〈τxu, τyφ̌〉 = 〈u, τy−xφ̌〉,

and also

(u ∗ (τxφ))(y) = 〈u, τy(τxφ)̌ 〉 = 〈u, τy−xφ̌〉,

so that all three expressions are in fact equal.
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We now investigate properties of u ∗ φ itself.

Lemma 11.26 For u ∈ D ′ and ψ ∈ D , u ∗ φ ∈ C(Rn).

Proof We know that τxφ
D−→ φ as x → 0 (see Examples 7). It follows

that τxφ
D−→ τcφ as x→ c. Therefore τxφ̌→ τcφ̌ as x→ c, and therefore,

since u is a distribution,

(u ∗ φ)(x) = 〈u, τxφ̌〉 → 〈u, τcφ̌〉 = (u ∗ φ)(c)

as x→ c, i.e. u ∗ φ ∈ C(Rn).

In fact we can do much better than this, and show that such convo-

lutions are smooth.

Proposition 11.27 Let u ∈ D ′, φ ∈ D ; then

(i) u ∗ φ ∈ C∞;

(ii) supp(u ∗ φ) ⊂ supp(u) + supp(φ); and

(ii) ∂α(u ∗ φ) = (∂αu) ∗ φ = u ∗ (∂αφ).

Note that if u is a distribution with compact support then it follows

that u ∗ φ ∈ D(Rn).

Proof To prove (ii), since u ∗ φ is continuous (from Lemma 11.26) it

is enough to show that u ∗ φ(x) = 0 for x /∈ supp(u) + supp(φ). For

such an x there is no y ∈ supp(u) with x − y ∈ supp(φ); so there is no

y ∈ supp(u) with y ∈ supp(τxφ̌), so u ∗ φ(x) = 0.

For (i) and (iii) we start from the identity

τx(∂αφ)̌ = (−1)|α|∂α(τxφ̌).

Applying u to both sides and using (11.8) yields

(u ∗ (∂αφ))(x) = ((∂αu) ∗ φ)(x).

Now consider a unit vector ej in the jth direction, and set

ηr =
1

r
(τ0 − τrej );

then

ηrφ(x) =
φ(x)− φ(x− rej)

r
,
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and by the definition of the derivative

ηrφ
D−→ ∂jφ as r → 0,

where the convergence is uniform due to Taylor’s Theorem. Since τx and

ˇare continuous operations in D , we have

τx((ηrφ)̌ )
D−→ τx(∂jφ)̌ .

Now, noting – using Lemma 11.25 – that

ηr(u ∗ φ) = u ∗ (ηrφ) = 〈u, τx((ηrφ)̌ 〉,

it follows on taking limr→0 that

∂j(u ∗ φ) = u ∗ (∂jφ).

It follows, since we can arbitrarily many derivatives, that u ∗ φ ∈ C∞
and that ∂α(u ∗ φ) = u ∗ (∂αφ) for any α ≥ 0. Once we know that

u ∗ φ ∈ C∞ we can show the other identity in (iii) simply using the

definitions; and it suffice to show that ∂j(u ∗ φ) = ∂ju ∗ φ:

∂ju ∗ φ(x) = 〈∂ju, τxφ̌〉 = 〈u, τx(̌∂jφ)〉.

The following proposition is key to defining the convolution of two

distributions.

Proposition 11.28 If u ∈ D ′(Rn), φ, ψ ∈ D(Rn) then

u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ.

The same identity holds if u ∈ E ′(Rn), φ ∈ D(Rn), and only one of φ, ψ

has compact support.

The proof relies on the fact that〈
u,

ˆ
K

Φ(y) dy

〉
=

ˆ
K

〈u,Φ(y)〉dy,

when Φ: Rn → D(Rn) is continuous. You can prove this by constructing

the integral from step functions.

Proof We start with the identity

(φ ∗ ψ)̌ (t) =

ˆ
ψ̌(s)(τsφ̌)(t) ds.
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If the supports of φ̌ and ψ̌ are K1 and K2 respectively, and we set

K = K1 + K2 then the map s 7→ ψ̌(s)τsφ̌ takes Rn continuously into

D(K), and is zero outside K2. Thus

(φ ∗ ψ)̌ =

ˆ
K2

ψ̌(s)τsφ̌ds ∈ D(Rn).

Now,

(u ∗ (φ ∗ ψ))(0) = 〈u, (φ ∗ ψ)̌ 〉

=

ˆ
K2

ψ̌(s)〈u, τsφ̌〉ds

=

ˆ
Rn

ψ(−s)(u ∗ φ)(s) ds

= ((u ∗ φ) ∗ ψ(0).

Taking ψ 7→ τ−xψ gives the result for general x.

We now show that we can approximate distributions by test functions.

Theorem 11.29 Suppose that (ψj) ∈ D with the property that

ψj ∗ φ
D−→ φ φ ∈ D .

Then

u ∗ ψj
D′−→ u u ∈ D ′.

Proof For any φ ∈ D we have

〈(u ∗ ψj), φ〉 = [(u ∗ ψj) ∗ φ̌](0) = [u ∗ (ψj ∗ φ̌)](0)

→ [u ∗ φ̌](0) = 〈u, φ〉,

i.e. u ∗ ψj
D′−→ u.

11.4.1 Convolution operators and fundamental solutions

of PDEs

Given u ∈ D ′(Rn) we can define an operator Lu : D(Rn)→ C∞(Rn) by

setting

Lu(φ) = u ∗ φ;
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by definition this means that

Lu(φ)(x) = 〈u, τxφ̌〉 φ ∈ D(Rn), x ∈ Rn.

Note that

(i) τh ◦Lu = Lu ◦ τh for every h ∈ Rn; and

(ii) if φk
D−→ φ then Luφk(0)→ Luφ(0).

These two properties characterise convolution.

Theorem 11.30 (Characterisation of convolution) For any operator

L : D(Rn) → C∞(Rn) that satisfies (i) and (ii) there exists a unique

u ∈ D ′(Rn) such that L = Lu.

Proof If such a u exists, then for every φ ∈ D(Rn) we have

〈u, φ̌〉 = 〈u, τ0φ̌〉 = Luφ(0) = L φ(0),

hence u is unique.

Conversely, if we define u by setting

〈u, φ〉 = L φ̌(0)

then condition (ii) implies that u ∈ D ′(Rn). For any φ ∈ D(Rn) and

x ∈ Rn we have

(L φ)(x) = τ−x(L φ)(0)

= L (τ−xφ)(0) by condition (i)

= 〈u, (τ−xφ) 〉̌
= 〈u, τxφ̌〉
= Luφ(x),

and so L = Lu as required.

Now we have a way of defining u ∗ v for u ∈ E ′(Rn) and v ∈ D ′(Rn).

Recall that we showed in Proposition 11.28 that when u ∈ E ′(Rn),

ψ ∈ C∞, and φ ∈ D(Rn) then

(u ∗ ψ) ∗ φ = u ∗ (ψ ∗ φ).
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If u ∈ E ′(Rn) and v ∈ D ′(Rn) then v ∗ φ ∈ C∞(Rn), and the expression

u ∗ (v ∗ φ) makes sense. Since the resulting map

φ 7→ u ∗ (v ∗ φ)

satisfies properties (i) and (ii) above, Theorem 11.30 guarantees that

there exists a unique distribution, which we write as u ∗ v, such that

(u ∗ v) ∗ φ = u ∗ (v ∗ φ) for all φ ∈ D(Rn).

Definition 11.31 If u ∈ E ′(Rn) and v ∈ D ′(Rn) then u ∗ v is the

unique distribution such that

(u ∗ v) ∗ φ = u ∗ (v ∗ φ) for all φ ∈ D(Rn).

Some simple but extremely important examples: take w = δ, then δ∗v
is the unique distribution such that

(δ ∗ v) ∗ φ = δ ∗ (v ∗ φ) = v ∗ φ,

so δ ∗ v = v, extending our previous result valid for v ∈ D(Rn) to

v ∈ E ′(Rn).

If w ∈ E ′(Rn) then we can extend Lw to Lw : D ′(Rn) → D ′(Rn) if

we set

Lw(u) = w ∗ u.

We call E ∈ D ′(Rn) a fundamental solution of Lw if

Lw(E) = δ.

Theorem 11.32 Let w ∈ E ′(Rn) and v ∈ D(Rn), and let E ∈ D ′(Rn)

be a fundamental solution of Lw. Then

(i) if u = E ∗ v then Lw(u) = v;

(ii) conversely, if Lw(u) = v and supp(u) is compact, then u = E ∗ v.

Proof (i) We have

Lw(E ∗ v) = w ∗ (E ∗ v) = (w ∗ E) ∗ v = δ ∗ v = v.

(ii) if Lw(u) = v then w ∗ u = v

E ∗ v = E ∗ (w ∗ u) = (E ∗ w) ∗ u = δ ∗ u = u.
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When supp(w) = {0} then by Theorem 11.22 we have w =
∑
|α|≤k cαδ

(α)

and so

Lw =
∑
|α|≤k

cα∂
α. (11.11)

We can rewrite Theorem 11.32 as a result for linear PDEs.

Corollary 11.33 Let L be a partial differential operator of the form

(11.11) and let E ∈ D ′(Rn) be such that

LE = δ.

Then for every v ∈ D(Rn) the equation L u = v has a unique solution

given by u = E ∗ v.

Example 11.34 If f ∈ D(R3) then the solution of −∆u = f on R3 is

given by

u(x) =
1

4π

ˆ
R3

f(y)

|x− y|
dy.



12

Zorn’s Lemma (non-examinable)

We will use Zorn’s Lemma to prove one of the results at the heart of func-

tional analysis, the Hahn–Banach Theorem. We will show that Zorn’s

Lemma is a consequence Axiom of Choice (in fact the two are equiva-

lent). We follow the lecture notes of Bergman, which can be found online.

For more details see Bergman, G.M. (1998) An Invitation to General Al-

gebra and Universal Constructions, pub. Henry Helson, Berkeley, CA.

We begin with a formal statement of the Axiom of Choice.

Axiom of Choice If (Xi)i∈I is any family of sets, there exists a

function ϕ on I such that ϕ(i) ∈ Xi.

The statement of Zorn’s Lemma requires some more terminology.

A set P is partially ordered with respect to the relation � provided

that

(i) x � x for all x ∈ P ;

(ii) if x, y, z ∈ P with x � y and y � z then x � z;
(iii) if x, y ∈ P , x � y, and y � x then x = y.

Two elements x, y ∈ P are comparable if x � y or y � x. A subset

C ⊂ P is called a chain if every two elements of C are comparable, and

P is totally ordered if every two elements of P are comparable.

Note that in a partial order two arbitrary elements of P need not be

ordered: consider for example, the case when P consists of all subsets of

R and X � Y if X ⊆ Y ; one cannot order [0, 1] and [1, 2].

84
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An element b ∈ P in an upper bound for a subset T ⊂ P if x � b for

every x ∈ T , and m ∈ T is a maximal element for T if x ∈ T and m � x
implies that x = m.

Zorn’s Lemma If P is a non-empty partially ordered set in which

every chain has an upper bound then P contains at least one maximal

element.

We will need some other terminology and minor results for the proof.

An initial segment of a chain S is a subset T ⊂ S such that if u, v ∈ S
with u � v and v ∈ T then u ∈ T .

A well-ordered set is a totally ordered set in which every non-empty

subset has a least element (i.e. every non-empty subset A contains an

element s such that s � a for every a ∈ A).

Fact 1. If S is a well-ordered subset of a partially ordered set P and

t /∈ S is an upper bound for S in P , then S ∪ {t} is well ordered.

Proof If a, b ∈ S ∪ {t} then (i) a, b ∈ S so are comparable; (ii) a ∈ S,

b = t so a � t; (iii) a = b = t so a � b and b � a. Any subset of S ∪ {t}
contains a least element: {t} has least element t; a subset of S contains a

least element; and for A ⊂ S the set A∪ {t} has the same least element

as A.

Fact 2. If C is a set of well-ordered subsets of a partially ordered set P ,

such that for all X,Y ∈ C, either X is an initial segment of Y , or Y is

an initial segment of X, then ∪X∈CX is well ordered.

Proof First we show that U = ∪X is totally ordered. Given any two

elements of U , a ∈ X and b ∈ Y , where X,Y ∈ C; but one of X and

Y is an initial segment of the other, so a, b are comparable. Now take

any non-empty subset of U ; it has a non-empty intersection with some

X ∈ C, and this intersection has a least element s. Now suppose that

we also have U ∩Y 6= ∅. Then (i) Y is an initial segment of X, in which

case Y ⊆ X so U ∩ Y ⊂ U ∩X, and we already know that s is the least

element of U ∩X; (ii) X is an initial segment of Y and v ∈ Y with v � s,
since s ∈ X it follows that v ∈ X; but then s is the least element of

U ∩X, so s � v.
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We follow Bergman’s lecture notes.

Theorem 12.1 Zorn’s Lemma is equivalent to the Axiom of Choice.

Proof First we show that the Axiom of Choice implies Zorn’s Lemma.

Let P be a non-empty partially ordered set with the property that

every chain in P is bounded.

In particular, for any chain C the set of all upper bounds for C is non

empty. Suppose that C does not contain an element that is maximal

for P ; then C must have upper bounds that do not lie in C. Otherwise,

suppose that b ∈ C is an upper bound for C and m ∈ P satisfies b � m;

then m is an upper bound for C and so m ∈ S; therefore m � b, whence

m = b. It follows that b is a maximal element of P .

We denote that set of these upper bounds for C that do not lie in C

by B(C), and using the Axiom of Choice for each chain C we choose

one element of B(C), and denote it by ϕ(C).

Now we would like to argue as follows: choose some p0 ∈ P . If this is

not maximal then let p1 = ϕ({p0}) � p0. If p1 is not maximal then let

p2 = ϕ({p0, p1}) � p1. If this process never terminates then we let

p∗ = ϕ({p0, p1, p2, . . .}).

If p∗ is not maximal in P then we append p∗ to the above chain and

continue...

Now, fix an element p ∈ P , and let Z denote the set of subsets S of

P that have the following properties:

(i) S is a well-ordered chain in P ;

(ii) p is the least element of S;

(iii) for every proper non-empty initial segment T ⊂ S the least ele-

ment of S \ T is ϕ(T ).

Note that Z is non-empty, since it contains {p}.

If S and S′ are two members of Z then one is an initial segment of

the other. To see this, let R denote the union of all sets that are initial

segments of both S and S′ - the ‘greatest common initial segment’ (R

is non-empty since {p} is an initial segment of every S ∈ Z). If R is a
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proper subset of S and of S′, then by (iii) the element ϕ(R) is the least

element of both S \R and S′ \R; this would mean that R ∪ ϕ(R) is an

initial segment of both S and S′, but this contradicts the maximality of

R. Therefore R = S or R = S′, i.e. one is an initial segment of the other.

By Fact 2, the set U , the union of all members of Z, is well ordered.

All members of Z are initial segments of U [suppose that u, v ∈ U ,

u � v, and v ∈ X (X ∈ Z); if u ∈ Y then either Y is an initial segment

of X, in which case u ∈ X immediately; or X is an initial segment of

Y and it follows from this that u ∈ X] and the least element of U is

{p}. Furthermore, U also satisfies (iii): if T is a proper nonempty initial

segment of U then there exists some u ∈ U \ T . By construction of U ,

u ∈ S for some S ∈ Z, and so T must be a proper initial segment of S.

Hence (iii) ensures that ϕ(T ) is the least element of S \ T , and since S

is an initial segment of U , ϕ(T ) is also the least element of U \ T .

Therefore U is a member of Z. If U does not contain a maximal

element of P then U ∪ {ϕ(U)} will be an element of Z that is not a

subset of U , which contradicts the definition of U .

Now we show that Zorn’s Lemma implies the Axiom of Choice.

Let P be the collection of all subsets Φ ⊂ I×∪i∈IXi with the property

that (i) for each i ∈ I there is at most one element of the form (i, ϕ) ∈ Φ

and (ii) if (i, ϕ) ∈ Φ then ϕ is a single element of Xi.

We partially order P by inclusion. P is non-empty because the empty

set is a member of P . Now suppose that C is a chain in P ; then U =

∪S∈CS is an upper bound for C, since S ⊆ U for every S ∈ C. It follows

that P has a maximal element Φ∗; if there exists an i ∈ I such that

Φ∗ contains no element of the form (i, ξ) with ξ ∈ Xi we can consider

Ψ := Φ∗ ∪ (i, ξ) for some ξ ∈ Xi, and then Ψ ∈ P , any Φ ∈ P satisfies

Φ � Ψ, but Ψ 6= Φ∗ which contradicts the maximality of Φ∗.


