Define a sequence $f_{n} \in C([0,1], \mathbb{R}), n \geq 2$, by $f_{n}(x)=0$ for $0 \leq x \leq 1 / 2-1 / n, f_{n}(x)=1$ for $1 / 2+1 / n \leq x \leq 1$ and linear in between.

If $m>n$ then

$$
\left\|f_{n}-f_{m}\right\|_{1}=\int_{0}^{1}\left|f_{n}(x)-f_{m}(x)\right| d x \leq \frac{2}{n}
$$

(since the integral is less than the area of the rectangle with base $[1 / 2-1 / n, 1 / 2+1 / n]$ and height 1) so f_{n} is $\|\cdot\|_{1}$-Cauchy.
We will now argue by contradiction. Suppose $C([0,1], \mathbb{R})$ is $\|\cdot\|_{1}$-complete. Then there exists $g \in C([0,1], \mathbb{R})$ such that $\left\|f_{n}-g\right\|_{1} \rightarrow 0$, as $n \rightarrow \infty$.

Claim 1: $g(x)=0$ for all $0<x<1 / 2$.
Justification: Suppose not. Then there exists $0<x_{0}<1 / 2$ such that $\left|g\left(x_{0}\right)\right|=a>0$. Since g is continuous, there exists $\delta>0$ such that $|g(x)|>a / 2$ for all $x_{0}-\delta<x<x_{0}+\delta$. We can choose δ so that $x_{0}+\delta<1 / 2$.

Now choose n_{0} so that $1 / 2-1 / n>x_{0}+\delta$ for all $n \geq n_{0}$. Then, for $n \geq n_{0}$,

$$
\left\|f_{n}-g\right\|_{1} \geq \int_{x_{0}-\delta}^{x_{0}+\delta}\left|f_{n}(x)-g(x)\right| d x=\int_{x_{0}-\delta}^{x_{0}+\delta}|g(x)| d x \geq \delta a>0
$$

which contradicts $\left\|f_{n}-g\right\|_{1} \rightarrow 0$, as $n \rightarrow \infty$. Therefore the claim holds.
Claim 2: $g(x)=1$ for all $1 / 2<x<1$.
Justification: Similar to Claim 1.
Combining the claims, g cannot be continuous at $1 / 2$. So we have a contradiction and so completeness fails to hold.

