MA377 Assignment I

due: Friday 28th October, 2pm, drop-off box outside the Undergraduate Office
Two of the following problems will be marked

Problem 1. (a) Let R be a ring. For $a \in R$ define a ring homomorphism $\varphi_{a}: R[T] \rightarrow R$: $P(T) \mapsto P(a)$ as the evaluation at a. By restriction of scalars, every φ_{a} gives the target R the structure of an $R[T]$-module, which we will denote R_{a}. Show that for $a, b \in R$, there is an $R[T]$-module isomorphism between R_{a} and R_{b} if and only if $a=b$.
(b) Let M be an R-module. Show that there is a surjection from a free R-module onto M.
(c) Show that the \mathbb{Z}-module \mathbb{Q} is not free.

Problem 2. (a) Compute the homology groups at \mathbb{Q}^{5} and \mathbb{Z}^{5} of the complexes

(b) Let

be a commutative diagram of R-modules in which the rows are exact sequences. Show the Five-Lemma: If f_{1}, f_{2}, f_{4} and f_{5} are isomorphisms then so is f_{3}.

Problem 3. Let k be a field, and let G be a group.
(a) A representation of G is a k-vector space V together with a map $G \times V \rightarrow V:(g, v) \mapsto g v$ such that i) $\forall g \in G$ the map $V \rightarrow V: v \mapsto g v$ is k-linear, ii) $\forall g, h \in G, v \in V: g(h v)=$ (gh) v, and iii) $\forall v \in V: 1 \cdot v=v$. A homomorphism of G representations is a k-linear $\operatorname{map} \varphi: V \rightarrow W$ such that $\varphi(g v)=g \cdot \varphi(v)$ for all $g \in G$ and $v \in V$.

Show that every $k[G]$-module M is a G-representation via the map $G \times M \rightarrow M$: $(g, v) \mapsto\langle g\rangle \cdot v$, and every $k[G]$-module homomorphism is a homomorphism of G representations. Conversely, show that every G-representation has a unique $k[G]-$ module structure, and every homomorphism of G-representations is a $k[G]$-module homomorphism.
(b) Let G be a finitely generated abelian group. Use the structure theorem for such groups and the Isomorphism Theorem for rings to give an explicit ring isomorphism between $k[G]$ and a quotient of a polynomial ring (in possibly several variables) with coefficients in k.

Problem 4. Let R be a ring. Compute the center of $M_{n}(R)$ and of $R[T]$ in terms of the center of R.

