MA377 Assignment I

due: Friday 28th October, 2pm, drop-off box outside the Undergraduate Office

Two of the following problems will be marked

Problem 1. (a) Let *R* be a ring. For $a \in R$ define a ring homomorphism $\varphi_a : R[T] \to R : P(T) \mapsto P(a)$ as the evaluation at *a*. By restriction of scalars, every φ_a gives the target *R* the structure of an *R*[*T*]-module, which we will denote R_a . Show that for $a, b \in R$, there is an *R*[*T*]-module isomorphism between R_a and R_b if and only if a = b.

- (b) Let M be an R-module. Show that there is a surjection from a free R-module onto M.
- (c) Show that the \mathbb{Z} -module \mathbb{Q} is not free.

Problem 2. (a) Compute the homology groups at \mathbb{Q}^5 and \mathbb{Z}^5 of the complexes

$$\mathbb{Q}^{3} \xrightarrow{\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}} \mathbb{Q}^{5} \xrightarrow{\begin{pmatrix} 1 & 1 & 0 & -1 & -1 \\ 2 & 2 & 0 & -2 & -2 \end{pmatrix}} \mathbb{Q}^{2} \quad \text{and} \quad \mathbb{Z}^{3} \xrightarrow{\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}} \mathbb{Z}^{5} \xrightarrow{\begin{pmatrix} 1 & 1 & 0 & -1 & -1 \\ 2 & 2 & 0 & -2 & -2 \end{pmatrix}} \mathbb{Z}^{2}.$$

(b) Let

M_1 -	$\longrightarrow M_2$ —	$\rightarrow M_3 -$	$\longrightarrow M_4$ –	$\longrightarrow M_5$
f_1	f_2	f_3	f_4	f_5
$\dot{N_1}$ -	•	$\rightarrow N_3$ —	•	•

be a commutative diagram of *R*-modules in which the rows are exact sequences. Show the Five-Lemma: If f_1 , f_2 , f_4 and f_5 are isomorphisms then so is f_3 .

Problem 3. Let *k* be a field, and let *G* be a group.

(a) A *representation of G* is a *k*-vector space *V* together with a map $G \times V \to V : (g, v) \mapsto gv$ such that i) $\forall g \in G$ the map $V \to V : v \mapsto gv$ is *k*-linear, ii) $\forall g, h \in G, v \in V : g(hv) = (gh)v$, and iii) $\forall v \in V : 1 \cdot v = v$. A homomorphism of *G* representations is a *k*-linear map $\varphi : V \to W$ such that $\varphi(gv) = g \cdot \varphi(v)$ for all $g \in G$ and $v \in V$.

Show that every k[G]-module M is a G-representation via the map $G \times M \to M$: $(g, v) \mapsto \langle g \rangle \cdot v$, and every k[G]-module homomorphism is a homomorphism of G-representations. Conversely, show that every G-representation has a unique k[G]-module structure, and every homomorphism of G-representations is a k[G]-module homomorphism.

(b) Let G be a finitely generated abelian group. Use the structure theorem for such groups and the Isomorphism Theorem for rings to give an explicit ring isomorphism between k[G] and a quotient of a polynomial ring (in possibly several variables) with coefficients in k.

Problem 4. Let *R* be a ring. Compute the center of $M_n(R)$ and of R[T] in terms of the center of *R*.