Measure Theory MA359

Assignment 1

Due to be submitted before 2 pm on Tuesday, October 25, to the drop off box in front of the undergraduate office

A. Warm up questions (Not for credit. Not to be submitted.)

- (A1) Let $X = \{0, 1, 2\}$ and $C = \{\{0\}\}$. Enumerate the class of all σ -algebras containing C and give $\sigma(C)$.
- (A2) Let $X = \{m, \alpha, x, d\}$ and $C = \{\{m, \alpha, x\}, \{\alpha, x\}\}\}$. What is the σ -algebra $\sigma(C)$?
- (A3) Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function. Show that f is Borel measurable.
- (A4) Suppose $\mathcal{C} \subset \mathcal{P}(X)$ is nonempty. Let $\mathcal{A}(\mathcal{C})$ be the minimal algebra containing \mathcal{C} . Show that $\mathcal{A}(\mathcal{C})$ consists of sets of the form

$$\bigcup_{i=1}^m \cap_{j=1}^{n_i} A_{i,j},$$

where for each i, j either $A_{i,j} \in \mathcal{C}$ or $A_{i,j}^c \in \mathcal{C}$ and where the m sets $\bigcap_{j=1}^{n_i} A_{i,j}$, $1 \leq i \leq m$, are mutually disjoint.

Notice that we can explicitly represent the sets from $\mathcal{A}(\mathcal{C})$, even though it is in general not possible for the sets from the σ -algebra $\sigma(\mathcal{C})$.

(A5) Prove that a finitely additive measure μ is a measure if and only if it is upward monotone convergent.

Here, finitely additive measure on (X, \mathcal{A}) is a map $\mu : \mathcal{A} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigcup_{n=1}^k A_n) = \sum_{n=1}^k \mu(A_n)$ for any disjoint $A_1, \ldots, A_k \in \mathcal{A}$ and it is upward monotone convergent if $\mu(\bigcup_{n=1}^\infty A_n) = \lim_{n \to \infty} \mu(A_n)$ whenever $A_1, A_2, \cdots \in \mathcal{A}$ and $A_1 \subset A_2 \subset \ldots$

(A6) Suppose (X, \mathcal{A}, μ) is a measure space and A_n is a sequence of sets in \mathcal{A} . We define the sets:

$$B = \{x \in X : x \in A_n \text{ for infinitely many } n\},$$

$$C = \{x \in X : \exists n_0(x) \text{ such that } x \in A_n \, \forall n \ge n_0(x)\}.$$

(a) Check that

$$B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \text{ and } C = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

and conclude that B, C belong to A.

(b) Show that

$$\mathbb{1}_B = \limsup_{n \to \infty} \mathbb{1}_{A_n},$$

$$\mathbb{1}_C = \liminf_{n \to \infty} \mathbb{1}_{A_n}.$$

(Remark: In view of the above it is natural to introduce the notation $B = \limsup_{n \to \infty} A_n$ and $C = \liminf_{n \to \infty} A_n$.)

(c) Show that $\mu(C) \leq \liminf_{n \to \infty} \mu(A_n)$ and if $\mu(\bigcup_{n=1}^{\infty} A_n) < \infty$, then

$$\limsup_{n\to\infty}\mu(A_n)\leq\mu(B).$$

(d) Prove the Borel - Cantelli Lemma, i.e.,

if
$$\sum_{n=1}^{\infty} \mu(A_n) < \infty$$
, then $\mu(B) = \mu(\limsup_{n \to \infty} A_n) = 0$.

B. Questions for credit (Due before 2 pm on Tuesday, October 25)

(B1)

- (a) Suppose that \mathcal{A}_n are algebras satisfying $\mathcal{A}_n \subset \mathcal{A}_{n+1}$. Show that $\bigcup_{n=1}^{\infty} \mathcal{A}_n$ is an algebra.
- (b) Check that if all A_n above are σ -algebras, their union need not be a σ -algebra.

Is a countable union of σ algebras (whether monotone or not) an algebra? Hint: Try considering the set of all positive integers with its σ -algebras $\mathcal{A}_n = \sigma(\mathcal{C}_n)$ where $\mathcal{C}_n = \mathcal{P}(\{1, 2, \dots, n\})$.

Check that if \mathcal{B}_1 and \mathcal{B}_2 are σ -algebras, their union \mathcal{B}_1 and \mathcal{B}_2 , need not be an algebra.

- **(B2)** Show that $\mathcal{B}(\mathbb{R})$ is countably generated; that is, show the Borel sets are generated by a countable class \mathcal{A} .
- **(B3)** Show that the periodic sets of \mathbb{R} form a σ -algebra; that is, let \mathcal{B} be the class of sets A with the property that $x \in A$ implies $x \pm n \in A$ for all natural numbers n. The \mathcal{B} is a σ -algebra.
- **(B4)** Let $\overline{R} = [-\infty, \infty]$ be extended real line. The Borel σ -algebra $\mathcal{B}(\overline{\mathbb{R}})$ is generated by the sets $[-\infty, x), x \in \mathbb{R}$.

Think of $\overline{R} = [-\infty, \infty]$ as homeomorphic in the topological sense to [-1, 1] under the transformation

$$x \mapsto \frac{x}{1 - |x|}$$

from [-1,1] to $[-\infty,\infty]$. Consider the usual topology on [-1,1] and map it into a topology on $[-\infty,\infty]$. This defines a collection of open sets on $[-\infty,\infty]$ and these open sets can be used to generate a Borel σ -algebra. How does this σ -algebra compare with the standard $\mathcal{B}(\overline{\mathbb{R}})$? Provide needed arguments!