Inequalities for inner products

From Maths
Jump to: navigation, search

Tables

Equation Form Notes
Cauchy-Schwarz inequality[1] [math]\vert\langle x,y\rangle\vert\le\Vert x\Vert\Vert y\Vert[/math] for [ilmath]\Vert x\Vert:=\sqrt{\langle x,x\rangle}[/ilmath] (equality if lin dependent) For any Inner product, note that [ilmath]\Vert\cdot\Vert[/ilmath] is the norm induced by the inner product
Parallelogram law[1] For any i.p.s we have [math]\Vert x+y\Vert^2+\Vert x-y\Vert^2=2\Vert x\Vert^2+2\Vert y\Vert^2[/math] Page 11
Polarisation identities[1] For a [ilmath]\mathbb{R} [/ilmath] inner product: [math]\langle x,y\rangle=\frac{1}{4}\Vert x+y\Vert^2-\frac{1}{4}\Vert x-y\Vert^2[/math] Page 10
For a [ilmath]\mathbb{C} [/ilmath] inner product: [math]\langle x,y\rangle=\frac{1}{4}\Vert x+y\Vert^2-\frac{1}{4}\Vert x-y\Vert^2+j\left[\frac{1}{4}\Vert x+jy\Vert^2-\frac{1}{4}\Vert x-jy\Vert^2\right][/math]
Pythagorean theorem[1] If [ilmath]x[/ilmath] is perpendicular to [ilmath]y[/ilmath] in any i.p.s, then: [math]\Vert x+y\Vert^2=\Vert x\Vert^2+\Vert y\Vert^2[/math] Page 11

References

  1. 1.0 1.1 1.2 1.3 Functional Analysis - George Bachman and Lawrence Narici